Yaacov Ben-David

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6712027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FLI1 regulates inflammation-associated genes to accelerate leukemogenesis. Cellular Signalling, 2022, 92, 110269.	3.6	5
2	Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cellular and Molecular Life Sciences, 2022, 79, 163.	5.4	9
3	Transcription factor Fli-1 as a new target for antitumor drug development. International Journal of Biological Macromolecules, 2022, 209, 1155-1168.	7.5	8
4	A critical ETV4/Twist1/Vimentin axis in Ha-RAS-induced aggressive breast cancer. Cancer Gene Therapy, 2022, 29, 1590-1599.	4.6	2
5	A racemosin B derivative, C25, suppresses breast cancer growth via lysosomal membrane permeabilization and inhibition of autophagic flux. Biochemical Pharmacology, 2022, 201, 115060.	4.4	1
6	FLI1 Induces Megakaryopoiesis Gene Expression Through WAS/WIP-Dependent and Independent Mechanisms; Implications for Wiskott-Aldrich Syndrome. Frontiers in Immunology, 2021, 12, 607836.	4.8	14
7	Ubash3b promotes TPA-mediated suppression of leukemogenesis through accelerated downregulation of PKCδ protein. Biochimie, 2021, 184, 8-17.	2.6	3
8	ERK activation via A1542/3 limonoids attenuates erythroleukemia through transcriptional stimulation of cholesterol biosynthesis genes. BMC Cancer, 2021, 21, 680.	2.6	8
9	An immunotherapeutic approach to decipher the role of long non-coding RNAs in cancer progression, resistance and epigenetic regulation of immune cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 242.	8.6	8
10	Propofol mediates pancreatic cancer cell activity through the repression of ADAM8 via SP1. Oncology Reports, 2021, 46, .	2.6	3
11	Fangchinoline derivatives induce cell cycle arrest and apoptosis in human leukemia cell lines via suppression of the PI3K/AKT and MAPK signaling pathway. European Journal of Medicinal Chemistry, 2020, 186, 111898.	5.5	27
12	A C21-steroidal derivative suppresses T-cell lymphoma in mice by inhibiting SIRT3 via SAP18-SIN3. Communications Biology, 2020, 3, 732.	4.4	8
13	Fli-1 Activation through Targeted Promoter Activity Regulation Using a Novel 3', 5'-diprenylated Chalcone Inhibits Growth and Metastasis of Prostate Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 2216.	4.1	16
14	Modeling germline mutations in pineoblastoma uncovers lysosome disruption-based therapy. Nature Communications, 2020, 11, 1825.	12.8	21
15	Erythropoietin Signaling in the Microenvironment of Tumors and Healthy Tissues. Advances in Experimental Medicine and Biology, 2020, 1223, 17-30.	1.6	12
16	FLI1 promotes protein translation via the transcriptional regulation of MKNK1 expression. International Journal of Oncology, 2020, 56, 430-438.	3.3	2
17	Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer, 2019, 19, 764.	2.6	12
18	Identification of diterpenoid compounds that interfere with Fli-1 DNA binding to suppress leukemogenesis. Cell Death and Disease. 2019, 10, 117.	6.3	29

#	Article	IF	CITATIONS
19	BW18, a C-21 steroidal glycoside, exerts an excellent anti-leukemia activity through inducing S phase cell cycle arrest and apoptosis via MAPK pathway in K562 cells. Biomedicine and Pharmacotherapy, 2019, 112, 108603.	5.6	18
20	Synthesis of novel guttiferone E and xanthochymol derivatives with cytotoxicities by inducing cell apoptosis and arresting the cell cycle phase. European Journal of Medicinal Chemistry, 2019, 162, 765-780.	5.5	23
21	Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Reports, 2018, 23, 112-126.	6.4	58
22	Design, synthesis and bioactivity investigation of tetrandrine derivatives as potential anti-cancer agents. MedChemComm, 2018, 9, 1131-1141.	3.4	19
23	Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. European Journal of Medicinal Chemistry, 2018, 143, 1968-1980.	5.5	40
24	Novel racemosin B derivatives as new therapeutic agents for aggressive breast cancer. Bioorganic and Medicinal Chemistry, 2018, 26, 6096-6104.	3.0	14
25	Regulation of RAB22A by mir-193b inhibits breast cancer growth and metastasis mediated by exosomes. International Journal of Oncology, 2018, 53, 2705-2714.	3.3	24
26	Novel flavaglineâ€like compounds with potent Fliâ€1 inhibitory activity suppress diverse types of leukemia. FEBS Journal, 2018, 285, 4631-4645.	4.7	22
27	Associations Between XPD Lys751Gln Polymorphism and Leukemia: A Meta-Analysis. Frontiers in Genetics, 2018, 9, 218.	2.3	6
28	Syntheses and anti-cancer activities of glycosylated derivatives of diosgenin. Chemical Research in Chinese Universities, 2017, 33, 80-86.	2.6	15
29	Fli-1 overexpression in erythroleukemic cells promotes erythroid de-differentiation while Spi-1/PU.1 exerts the opposite effect. International Journal of Oncology, 2017, 51, 456-466.	3.3	9
30	microRNA-143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCl Insight, 2017, 2, .	5.0	22
31	A screen for Fli-1 transcriptional modulators identifies PKC agonists that induce erythroid to megakaryocytic differentiation and suppress leukemogenesis. Oncotarget, 2017, 8, 16728-16743.	1.8	22
32	Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo. Molecular and Clinical Oncology, 2016, 5, 717-723.	1.0	2
33	Suppression of Her2/Neu mammary tumor development in <i>mda-7/IL-24</i> transgenic mice. Oncotarget, 2015, 6, 36943-36954.	1.8	14
34	MDA-7/IL-24 functions as a tumor suppressor gene <i>in vivo</i> in transgenic mouse models of breast cancer. Oncotarget, 2015, 6, 36928-36942.	1.8	34
35	Insertional activation of myb by F-MuLV in SCID mice induces myeloid leukemia. International Journal of Oncology, 2013, 43, 169-176.	3.3	4
36	The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood, 2012, 119, 4486-4498.	1.4	93

YAACOV BEN-DAVID

#	Article	IF	CITATIONS
37	The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood, 2010, 116, 428-436.	1.4	51
38	Vascular Endothelial Growth Factor—A Positive and Negative Regulator of Tumor Growth. Cancer Research, 2010, 70, 863-867.	0.9	29
39	Enrichment of Sca1+ hematopoietic progenitors in polycythemic mice inhibits leukemogenesis. Blood, 2009, 114, 1831-1841.	1.4	10
40	Enhancment of SCA1 Positive Hematopoietic Progenitors in Polycythemic Mice Inhibits Leukemogenesis. Blood, 2008, 112, 5245-5245.	1.4	4
41	Enhanced natural-killer cell and erythropoietic activities in VEGF-A–overexpressing mice delay F-MuLV–induced erythroleukemia. Blood, 2007, 109, 2139-2146.	1.4	24
42	Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood, 2007, 110, 2631-2640.	1.4	52
43	The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood, 2005, 105, 4500-4507.	1.4	34
44	Phosphorylation status of c-Kit and Epo receptors, and the presence of wild-type p53 confer in vitro resistance of murine erythroleukemic cells to Celecoxib. Oncogene, 2004, 23, 2305-2314.	5.9	7
45	Cyclin D1 is necessary but not sufficient for anchorage-independent growth of rat mammary tumor cells and is associated with resistance of the Copenhagen rat to mammary carcinogenesis. Oncogene, 2003, 22, 3452-3462.	5.9	14
46	Friend virus-induced erythroleukemias: a unique and well-defined mouse model for the development of leukemia. Anticancer Research, 2003, 23, 2159-66.	1.1	22
47	Contiguous arrangement ofp45 NFE2,HnRNP A1, andHP1? on mouse chromosome 15 and human chromosome 12: Evidence for suppression of these genes due to retroviral integration within theFli-2 locus. Genes Chromosomes and Cancer, 2001, 30, 91-95.	2.8	4
48	Bcl-2 expression in F-MuLV-induced erythroleukemias: a role for the anti-apoptotic action of Bcl-2 during tumor progression. Oncogene, 2001, 20, 2291-2300.	5.9	11
49	Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene, 2000, 19, 395-402.	5.9	50
50	The p44S10 locus, encoding a subunit of the proteasome regulatory particle, is amplified during progression of cutaneous malignant melanoma. Oncogene, 2000, 19, 1419-1427.	5.9	26
51	Epo regulates erythroid proliferation and differentiation through distinct signaling pathways: implication for erythropoiesis and Friend virus-induced erythroleukemia. Oncogene, 2000, 19, 2296-2304.	5.9	33
52	The role of Fli-1 in normal cell function and malignant transformation. Oncogene, 2000, 19, 6482-6489.	5.9	112
53	Loss of p53 in F-MuLV induced-erythroleukemias accelerates the acquisition of mutational events that confers immortality and growth factor independence. Oncogene, 1999, 18, 5525-5534.	5.9	23
54	Fli-1, an Ets-Related Transcription Factor, Regulates Erythropoietin-Induced Erythroid Proliferation and Differentiation: Evidence for Direct Transcriptional Repression of the <i>Rb</i> Gene during Differentiation. Molecular and Cellular Biology, 1999, 19, 4452-4464.	2.3	97

#	Article	IF	CITATIONS
55	Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nature Genetics, 1998, 19, 199-202.	21.4	267
56	Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell, 1991, 66, 831-834.	28.9	256