John Boone Kauffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6711877/publications.pdf

Version: 2024-02-01

51 papers

8,379 citations

32 h-index 214800 47 g-index

54 all docs

54 docs citations

54 times ranked 7061 citing authors

#	Article	IF	CITATIONS
1	Riparian vegetation composition and diversity shows resilience following cessation of livestock grazing in northeastern Oregon, USA. PLoS ONE, 2022, 17, e0250136.	2.5	5
2	Livestock Use on Public Lands in the Western USA Exacerbates Climate Change: Implications for Climate Change Mitigation and Adaptation. Environmental Management, 2022, 69, 1137-1152.	2.7	6
3	Contributions of mangrove conservation and restoration to climate change mitigation in Indonesia. Global Change Biology, 2022, 28, 4523-4538.	9.5	21
4	Carbon Stocks from Peat Swamp Forest and Oil Palm Plantation in Central Kalimantan, Indonesia. Springer Climate, 2021, , 203-227.	0.6	9
5	Future carbon emissions from global mangrove forest loss. Global Change Biology, 2021, 27, 2856-2866.	9.5	93
6	Ecosystem carbon losses following a climate-induced mangrove mortality in Brazil. Journal of Environmental Management, 2021, 297, 113381.	7.8	21
7	Total ecosystem carbon stocks at the marineâ€terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States. Global Change Biology, 2020, 26, 5679-5692.	9.5	35
8	Repeated fire altered succession and increased fire behavior in basin big sagebrush–native perennial grasslands. Ecosphere, 2020, 11, e03124.	2.2	20
9	Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 2020, 90, e01405.	5.4	139
10	Land use impacts on benthic bioturbation potential and carbon burial in Brazilian mangrove ecosystems. Limnology and Oceanography, 2020, 65, 2366-2376.	3.1	20
11	Long-Term Effects of Fire on Vegetation Structure and Predicted Fire Behavior in Wyoming Big Sagebrush Ecosystems. Ecosystems, 2019, 22, 257-265.	3.4	6
12	Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 2019, 432, 17-29.	3.2	76
13	The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 535-555.	2.1	25
14	The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conservation Letters, 2018, 11, e12445.	5.7	50
15	And details for landâ€use carbon footprints arise from quantitative and replicated studies. Frontiers in Ecology and the Environment, 2018, 16, 12-13.	4.0	10
16	Carbon stocks of mangroves and salt marshes of the Amazon region, Brazil. Biology Letters, 2018, 14, 20180208.	2.3	62
17	Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 2018, 8, 5530-5540.	1.9	92
18	Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 2017, 27, 859-874.	3.8	147

#	Article	IF	CITATIONS
19	The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 2017, 15, 183-188.	4.0	97
20	Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE, 2017, 12, e0187749.	2.5	78
21	Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 2016, 24, 187-201.	1.5	62
22	Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management, 2016, 24, 203-216.	1.5	82
23	The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 2015, 5, 1089-1092.	18.8	495
24	Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 2014, 24, 518-527.	3.8	194
25	Long-term livestock grazing alters aspen age structure in the northwestern Great Basin. Forest Ecology and Management, 2014, 329, 30-36.	3.2	10
26	Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE, 2013, 8, e56569.	2.5	227
27	Estimating Global "Blue Carbon―Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 2012, 7, e43542.	2.5	1,082
28	Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 2011, 4, 293-297.	12.9	1,950
29	Ecosystem Carbon Stocks of Micronesian Mangrove Forests. Wetlands, 2011, 31, 343-352.	1.5	301
30	Interactions of Fire and Nonnative Species Across an Elevation/Plant Community Gradient in Hawaii Volcanoes National Park. Biotropica, 2010, 42, 647-655.	1.6	15
31	Native Bunchgrass Response to Prescribed Fire in Ungrazed Mountain Big Sagebrush Ecosystems. Fire Ecology, 2010, 6, 86-96.	3.0	21
32	Response of native Hawaiian woody species to lava-ignited wildfires in tropical forests and shrublands. Plant Ecology, 2009, 201, 197-209.	1.6	22
33	Vegetation response to a short interval between highâ€severity wildfires in a mixedâ€evergreen forest. Journal of Ecology, 2009, 97, 142-154.	4.0	159
34	Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics. Ecological Applications, 2009, 19, 1211-1222.	3.8	87
35	Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath–Siskiyou Mountains. Canadian Journal of Forest Research, 2009, 39, 823-838.	1.7	116
36	Allometric Models for Predicting Aboveground Biomass in Two Widespread Woody Plants in Hawaii. Biotropica, 2008, 40, 313-320.	1.6	121

#	Article	IF	CITATIONS
37	LIVESTOCK EXCLUSION AND BELOWGROUND ECOSYSTEM RESPONSES IN RIPARIAN MEADOWS OF EASTERN OREGON. , 2004, 14, 1671-1679.		7 5
38	MODELING BIOMASS BURNING EMISSIONS FOR AMAZON FOREST AND PASTURES IN RONDOÌ,NIA, BRAZIL. , 2004, 14, 232-246.		20
39	Biomass, Carbon, and Nitrogen Pools in Mexican Tropical Dry Forest Landscapes. Ecosystems, 2003, 6, 609-629.	3.4	174
40	Initial Effects of Prescribed Fire on Morphology, Abundance, and Phenology of Forbs in Big Sagebrush Communities in Southeastern Oregon. Restoration Ecology, 2003, 11, 82-90.	2.9	90
41	Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. Journal of Tropical Ecology, 2003, 19, 457-464.	1.1	47
42	ROOT BIOMASS IN RELATION TO CHANNEL MORPHOLOGY OF HEADWATER STREAMS. Journal of the American Water Resources Association, 2001, 37, 1653-1663.	2.4	21
43	Range Ecology, Global Livestock Influences. , 2001, , 33-52.		12
44	ECOSYSTEM-SCALE IMPACTS OF DEFORESTATION AND LAND USE IN A HUMID TROPICAL REGION OF MEXICO. , 2000, 10, 515-527.		130
45	BIOMASS, CARBON, AND NUTRIENT DYNAMICS OF SECONDARY FORESTS IN A HUMID TROPICAL REGION OF MÉXICO. Ecology, 1999, 80, 1892-1907.	3.2	253
46	Fire in the Brazilian Amazon 2. Biomass, nutrient pools and losses in cattle pastures. Oecologia, 1998, 113, 415-427.	2.0	138
47	Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 1998, 14, 263-283.	1.1	252
48	An Ecological Perspective of Riparian and Stream Restoration in the Western United States. Fisheries, 1997, 22, 12-24.	0.8	307
49	Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia, 1995, 104, 397-408.	2.0	284
50	Biomass and Nutrient Dynamics Associated with Slash Fires in Neotropical Dry Forests. Ecology, 1993, 74, 140-151.	3.2	180
51	Livestock Impacts on Riparian Ecosystems and Streamside Management Implications A Review. Journal of Range Management, 1984, 37, 430.	0.3	423