
Stephanie A Eichorst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6710686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The breakthrough paradox. EMBO Reports, 2022, 23, .	4.5	5
2	Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME Journal, 2021, 15, 363-376.	9.8	23
3	Microaerobic Lifestyle at Nanomolar O ₂ Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. MSystems, 2021, 6, e0025021.	3.8	12
4	One Complete and Seven Draft Genome Sequences of Subdivision 1 and 3 <i>Acidobacteria</i> Isolated from Soil. Microbiology Resource Announcements, 2020, 9, .	0.6	5
5	Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil. MSystems, 2020, 5, .	3.8	45
6	Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Frontiers in Microbiology, 2019, 10, 168.	3.5	106
7	Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136, 107521.	8.8	217
8	Peatland <i>Acidobacteria</i> with a dissimilatory sulfur metabolism. ISME Journal, 2018, 12, 1729-1742.	9.8	168
9	Genomic insights into the <i>Acidobacteria</i> reveal strategies for their success in terrestrial environments. Environmental Microbiology, 2018, 20, 1041-1063.	3.8	228
10	Application of stableâ€isotope labelling techniques for the detection of active diazotrophs. Environmental Microbiology, 2018, 20, 44-61.	3.8	44
11	A bacterial pioneer produces cellulase complexes that persist through community succession. Nature Microbiology, 2018, 3, 99-107.	13.3	38
12	Evaluation of Primers Targeting the Diazotroph Functional Gene and Development of NifMAP – A Bioinformatics Pipeline for Analyzing nifH Amplicon Data. Frontiers in Microbiology, 2018, 9, 703.	3.5	50
13	Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 2016, 97, 168-175.	8.8	205
14	Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME Journal, 2016, 10, 833-845.	9.8	62
15	Genomic Analysis of Xylose Metabolism in Members of the Deinoccocus-Thermus Phylum from Thermophilic Biomass-Deconstructing Bacterial Consortia. Bioenergy Research, 2015, 8, 1031-1038.	3.9	4
16	Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiology Ecology, 2015, 91, fiv106.	2.7	105
17	Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO ₂ . Applied and Environmental Microbiology, 2014, 80, 3103-3112.	3.1	122
18	Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass. Applied and Environmental Microbiology, 2014, 80, 7423-7432.	3.1	27

Stephanie A Eichorst

#	Article	IF	CITATIONS
19	Community dynamics of celluloseâ€adapted thermophilic bacterial consortia. Environmental Microbiology, 2013, 15, 2573-2587.	3.8	77
20	Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing. Applied and Environmental Microbiology, 2012, 78, 2316-2327.	3.1	175
21	Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes. Applied and Environmental Microbiology, 2012, 78, 1523-1533.	3.1	160
22	Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrassâ€adapted bacterial consortia. Biotechnology and Bioengineering, 2012, 109, 1140-1145.	3.3	17
23	A robust PCR primer design platform applied to the detection of Acidobacteria Group 1 in soil. Nucleic Acids Research, 2012, 40, e96-e96.	14.5	10
24	Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 2012, 14, 1145-1158.	3.8	79
25	Influence of Plant Polymers on the Distribution and Cultivation of Bacteria in the Phylum <i>Acidobacteria</i> . Applied and Environmental Microbiology, 2011, 77, 586-596.	3.1	227
26	Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076. PLoS ONE, 2011, 6, e24882.	2.5	60
27	Isolation and Characterization of Soil Bacteria That Define Terriglobus gen. nov., in the Phylum Acidobacteria. Applied and Environmental Microbiology, 2007, 73, 2708-2717.	3.1	301
28	New Strategies for Cultivation and Detection of Previously Uncultured Microbes. Applied and Environmental Microbiology, 2004, 70, 4748-4755.	3.1	369
29	Editorial: Acidobacteria – Towards Unraveling the Secrets of a Widespread, Though Enigmatic, Phylum. Frontiers in Microbiology, 0, 13, .	3.5	4