Stephanie A Eichorst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6710686/publications.pdf

Version: 2024-02-01

29 papers 2,946 citations

331670 21 h-index 501196 28 g-index

31 all docs

31 docs citations

times ranked

31

4101 citing authors

#	Article	IF	CITATIONS
1	New Strategies for Cultivation and Detection of Previously Uncultured Microbes. Applied and Environmental Microbiology, 2004, 70, 4748-4755.	3.1	369
2	Isolation and Characterization of Soil Bacteria That Define Terriglobus gen. nov., in the Phylum Acidobacteria. Applied and Environmental Microbiology, 2007, 73, 2708-2717.	3.1	301
3	Genomic insights into the <i>Acidobacteria (i) reveal strategies for their success in terrestrial environments. Environmental Microbiology, 2018, 20, 1041-1063.</i>	3.8	228
4	Influence of Plant Polymers on the Distribution and Cultivation of Bacteria in the Phylum <i>Acidobacteria</i> . Applied and Environmental Microbiology, 2011, 77, 586-596.	3.1	227
5	Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 2019, 136, 107521.	8.8	217
6	Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry, 2016, 97, 168-175.	8.8	205
7	Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing. Applied and Environmental Microbiology, 2012, 78, 2316-2327.	3.1	175
8	Peatland <i>Acidobacteria </i> with a dissimilatory sulfur metabolism. ISME Journal, 2018, 12, 1729-1742.	9.8	168
9	Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes. Applied and Environmental Microbiology, 2012, 78, 1523-1533.	3.1	160
10	Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO ₂ . Applied and Environmental Microbiology, 2014, 80, 3103-3112.	3.1	122
11	Rapid Transfer of Plant Photosynthates to Soil Bacteria via Ectomycorrhizal Hyphae and Its Interaction With Nitrogen Availability. Frontiers in Microbiology, 2019, 10, 168.	3.5	106
12	Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiology Ecology, 2015, 91, fiv106.	2.7	105
13	Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 2012, 14, 1145-1158.	3.8	79
14	Community dynamics of celluloseâ€adapted thermophilic bacterial consortia. Environmental Microbiology, 2013, 15, 2573-2587.	3.8	77
15	Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME Journal, 2016, 10, 833-845.	9.8	62
16	Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076. PLoS ONE, 2011, 6, e24882.	2.5	60
17	Evaluation of Primers Targeting the Diazotroph Functional Gene and Development of NifMAP – A Bioinformatics Pipeline for Analyzing nifH Amplicon Data. Frontiers in Microbiology, 2018, 9, 703.	3.5	50
18	Complementary Metagenomic Approaches Improve Reconstruction of Microbial Diversity in a Forest Soil. MSystems, 2020, 5, .	3.8	45

#	Article	IF	CITATION
19	Application of stableâ€isotope labelling techniques for the detection of active diazotrophs. Environmental Microbiology, 2018, 20, 44-61.	3.8	44
20	A bacterial pioneer produces cellulase complexes that persist through community succession. Nature Microbiology, 2018, 3, 99-107.	13.3	38
21	Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass. Applied and Environmental Microbiology, 2014, 80, 7423-7432.	3.1	27
22	Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME Journal, 2021, 15, 363-376.	9.8	23
23	Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrassâ€adapted bacterial consortia. Biotechnology and Bioengineering, 2012, 109, 1140-1145.	3.3	17
24	Microaerobic Lifestyle at Nanomolar O ₂ Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. MSystems, 2021, 6, e0025021.	3.8	12
25	A robust PCR primer design platform applied to the detection of Acidobacteria Group 1 in soil. Nucleic Acids Research, 2012, 40, e96-e96.	14.5	10
26	One Complete and Seven Draft Genome Sequences of Subdivision 1 and 3 <i>Acidobacteria < \midi> Isolated from Soil. Microbiology Resource Announcements, 2020, 9, .</i>	0.6	5
27	The breakthrough paradox. EMBO Reports, 2022, 23, .	4.5	5
28	Genomic Analysis of Xylose Metabolism in Members of the Deinoccocus-Thermus Phylum from Thermophilic Biomass-Deconstructing Bacterial Consortia. Bioenergy Research, 2015, 8, 1031-1038.	3.9	4
29	Editorial: Acidobacteria – Towards Unraveling the Secrets of a Widespread, Though Enigmatic, Phylum. Frontiers in Microbiology, 0, 13, .	3.5	4