David Julian McClements

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6709918/publications.pdf

Version: 2024-02-01

1,639 papers

131,952 citations

162 h-index 263 g-index

1663 all docs

1663 docs citations

1663 times ranked 47941 citing authors

#	Article	IF	CITATIONS
1	Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 1037-1054.	10.3	27
2	Utilization of diverse protein sources for the development of protein-based nanostructures as bioactive carrier systems: A review of recent research findings (2010–2021). Critical Reviews in Food Science and Nutrition, 2023, 63, 2719-2737.	10.3	8
3	Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 2023, 63, 2018-2041.	10.3	49
4	Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Critical Reviews in Food Science and Nutrition, 2023, 63, 4092-4105.	10.3	17
5	Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Critical Reviews in Food Science and Nutrition, 2023, 63, 4687-4727.	10.3	35
6	Application of starch-based nanoparticles and cyclodextrin for prebiotics delivery and controlled glucose release in the human gut: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 6126-6137.	10.3	6
7	Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 6423-6444.	10.3	13
8	Janus particles: A review of their applications in food and medicine. Critical Reviews in Food Science and Nutrition, 2023, 63, 10093-10104.	10.3	4
9	The future of 3D food printing: Opportunities for space applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 10079-10092.	10.3	14
10	Modification of flavonoids: methods and influences on biological activities. Critical Reviews in Food Science and Nutrition, 2023, 63, 10637-10658.	10.3	6
11	The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Critical Reviews in Food Science and Nutrition, 2023, 63, 12126-12135.	10.3	11
12	Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Critical Reviews in Food Science and Nutrition, 2022, 62, 1242-1269.	10.3	33
13	Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 2022, 62, 4752-4768.	10.3	57
14	Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Critical Reviews in Food Science and Nutrition, 2022, 62, 5029-5055.	10.3	73
15	Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 8028-8044.	10.3	33
16	Contribution of starch to the flavor of rice-based instant foods. Critical Reviews in Food Science and Nutrition, 2022, 62, 8577-8588.	10.3	15
17	High internal phase emulsions stabilized by native and heat-treated lactoferrin-carboxymethyl chitosan complexes: Comparison of molecular and granular emulsifiers. Food Chemistry, 2022, 370, 130507.	8.2	16
18	Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. Journal of Agricultural and Food Chemistry, 2022, 70, 6884-6900.	5.2	28

#	Article	IF	Citations
19	Modification of physicochemical properties and degradation of barley flour upon enzymatic extrusion. Food Bioscience, 2022, 45, 101243.	4.4	10
20	Impact of excipient emulsions made from different types of oils on the bioavailability and metabolism of curcumin in gastrointestinal tract. Food Chemistry, 2022, 370, 130980.	8.2	8
21	Stimulus-responsive hydrogels in food science: A review. Food Hydrocolloids, 2022, 124, 107218.	10.7	66
22	Impact of polysaccharide mixtures on the formation, stability and EGCG loading of water-in-oil high internal phase emulsions. Food Chemistry, 2022, 372, 131225.	8.2	19
23	Gastrointestinal biotransformation and tissue distribution of pterostilbene after long-term dietary administration in mice. Food Chemistry, 2022, 372, 131213.	8.2	5
24	Improving norbixin dispersibility and stability by liposomal encapsulation using the <scp>pH</scp> â€driven method. Journal of the Science of Food and Agriculture, 2022, 102, 2070-2079.	3.5	8
25	Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Patents on Anti-Cancer Drug Discovery, 2022, 17, 26-41.	1.6	15
26	Fabrication, characterization and functional attributes of zein-egg white derived peptides (EWDP)-chitosan ternary nanoparticles for encapsulation of curcumin: Role of EWDP. Food Chemistry, 2022, 372, 131266.	8.2	28
27	Formation and characterization of starch-based spherulite: Effect of molecular weight of potato amylose starch. Food Chemistry, 2022, 371, 131060.	8.2	3
28	Bioactive and functional biodegradable packaging films reinforced with nanoparticles. Journal of Food Engineering, 2022, 312, 110752.	5.2	33
29	Adverse effects of linoleic acid: Influence of lipid oxidation on lymphatic transport of citrus flavonoid and enterocyte morphology. Food Chemistry, 2022, 369, 130968.	8.2	4
30	Characterizing and alleviating the browning of Choerospondias axillaris fruit cake during drying. Food Control, 2022, 132, 108522.	5.5	15
31	Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocolloids, 2022, 122, 107056.	10.7	19
32	Development of pH-responsive emulsions stabilized by whey protein fibrils. Food Hydrocolloids, 2022, 122, 107067.	10.7	48
33	Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. Journal of Hazardous Materials, 2022, 421, 126752.	12.4	125
34	Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocolloids, 2022, 123, 107184.	10.7	37
35	Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocolloids, 2022, 122, 107069.	10.7	24
36	TiO2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chemistry, 2022, 371, 131045.	8.2	14

#	Article	IF	CITATIONS
37	V-type granular starch prepared using aqueous-ethanol heat treatment at different ethanol concentrations. Food Hydrocolloids, 2022, 123, 107176.	10.7	9
38	Insights into rice starch degradation by maltogenic α–amylase: Effect of starch structure on its rheological properties. Food Hydrocolloids, 2022, 124, 107289.	10.7	25
39	Oral perception of the textural and flavor characteristics of soyâ€cow blended emulsions. Journal of Texture Studies, 2022, 53, 108-121.	2.5	5
40	Effective change on rheology and structure properties of xanthan gum by industry-scale microfluidization treatment. Food Hydrocolloids, 2022, 124, 107319.	10.7	5
41	Interactions between TiO2 nanoparticles and plant proteins: Role of hydrogen bonding. Food Hydrocolloids, 2022, 124, 107302.	10.7	16
42	Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/β-carrageenan films. Food Hydrocolloids, 2022, 124, 107324.	10.7	90
43	Comparative study on the extraction of macadamia (Macadamia integrifolia) oil using different processing methods. LWT - Food Science and Technology, 2022, 154, 112614.	5.2	17
44	Effect of salt ions on mixed gels of wheat gluten protein and potato isolate protein. LWT - Food Science and Technology, 2022, 154, 112564.	5.2	23
45	Impact of food additive titanium dioxide on the polyphenol content and antioxidant activity of the apple juice. LWT - Food Science and Technology, 2022, 154, 112574.	5.2	7
46	Maltogenic \hat{l} ±-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocolloids, 2022, 124, 107256.	10.7	30
47	Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review. Food Chemistry, 2022, 372, 131332.	8.2	24
48	Utilizing protein-polyphenol molecular interactions to prepare moringa seed residue protein/tannic acid Pickering stabilizers. LWT - Food Science and Technology, 2022, 154, 112814.	5.2	17
49	Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin. Journal of Functional Foods, 2022, 88, 104867.	3.4	32
50	Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends in Food Science and Technology, 2022, 119, 90-100.	15.1	38
51	Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 2022, 280, 121265.	11.4	52
52	Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. LWT - Food Science and Technology, 2022, 154, 112890.	5.2	18
53	Comprehensive review on potential applications of microfluidization in food processing. Food Science and Biotechnology, 2022, 31, 17-36.	2.6	18
54	Fabrication of composite hydrogels by assembly of okara cellulose nanofibers and gum Arabic in ionic liquids: Structure and properties. Journal of Molecular Liquids, 2022, 349, 118132.	4.9	11

#	Article	IF	Citations
55	Recent advances on the improvement of quercetin bioavailability. Trends in Food Science and Technology, 2022, 119, 192-200.	15.1	68
56	Antioxidant and prooxidant activities of tea polyphenols in oil-in-water emulsions depend on the level used and the location of proteins. Food Chemistry, 2022, 375, 131672.	8.2	16
57	Industry-scale microfluidizer system produced whole mango juice: Effect on the physical properties, microstructure and pectin properties. Innovative Food Science and Emerging Technologies, 2022, 75, 102887.	5.6	16
58	Interfacial characteristics and <i>in vitro</i> digestion of emulsion coated by single or mixed natural emulsifiers: lecithin and/or rice glutelin hydrolysates. Journal of the Science of Food and Agriculture, 2022, 102, 2990-2999.	3.5	11
59	Protective effects of non-extractable phenolics from strawberry against inflammation and colon cancer in vitro. Food Chemistry, 2022, 374, 131759.	8.2	12
60	Cellulose Nanomaterials for Oil Exploration Applications. Polymer Reviews, 2022, 62, 585-625.	10.9	63
61	The impact of konjac glucomannan on the physical and chemical stability of walnut oilâ€inâ€water emulsions coated by whey proteins. Journal of the Science of Food and Agriculture, 2022, 102, 4003-4011.	3 . 5	7
62	The fabrication, characterization, and application of chitosan–NaOH modified casein nanoparticles and their stabilized long-term stable high internal phase Pickering emulsions. Food and Function, 2022, 13, 1408-1420.	4.6	9
63	Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. LWT - Food Science and Technology, 2022, 155, 112935.	5 . 2	19
64	Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacological Research, 2022, 176, 106072.	7.1	20
65	Factors impacting the antioxidant/prooxidant activity of tea polyphenols on lipids and proteins in oil-in-water emulsions. LWT - Food Science and Technology, 2022, 156, 113024.	5.2	25
66	Interactions between nanoparticle-based food additives and other food ingredients: A review of current knowledge. Trends in Food Science and Technology, 2022, 120, 75-87.	15.1	29
67	Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method. International Journal of Biological Macromolecules, 2022, 200, 34-41.	7.5	7
68	A novel environmentally friendly nanocomposite aerogel based on the semi-interpenetrating network of polyacrylic acid into Xanthan gum containing hydroxyapatite for efficient removal of methylene blue from wastewater. International Journal of Biological Macromolecules, 2022, 201, 133-142.	7.5	16
69	In vitro nutrition properties of whole Tartary buckwheat straight noodles and its amelioration on type 2 diabetic rats. Food Bioscience, 2022, 46, 101525.	4.4	7
70	Encapsulation, protection, and delivery of curcumin using succinylated-cyclodextrin systems with strong resistance to environmental and physiological stimuli. Food Chemistry, 2022, 376, 131869.	8.2	19
71	Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocolloids, 2022, 126, 107478.	10.7	40
72	Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocolloids, 2022, 126, 107441.	10.7	71

#	Article	IF	Citations
73	Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. Journal of Colloid and Interface Science, 2022, 612, 525-535.	9.4	13
74	Improving foam performance using colloidal protein–polyphenol complexes: Lactoferrin and tannic acid. Food Chemistry, 2022, 377, 131950.	8.2	41
75	Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocolloids, 2022, 125, 107438.	10.7	28
76	Disintegrating the Structure and Improving the Functionalities of Pea Fiber by Industry-Scale Microfluidizer System. Foods, 2022, 11, 418.	4.3	4
77	Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biological Macromolecules, 2022, 195, 523-529.	7.5	14
78	The measurement of molecular interactions, structure and physical properties of okara cellulose composite hydrogels using different analytical methods. Journal of the Science of Food and Agriculture, 2022, 102, 4162-4170.	3 . 5	5
79	Effect of molecular weight on the interfacial and emulsifying characteristics of rice glutelin hydrolysates. Food Hydrocolloids, 2022, 128, 107560.	10.7	24
80	The effects of removing endogenous proteins, \hat{l}^2 -glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocolloids, 2022, 127, 107457.	10.7	18
81	Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods, 2022, 11, 450.	4.3	13
82	Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chemistry, 2022, 384, 132429.	8.2	21
83	An updated review on foodâ€derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1732-1776.	11.7	24
84	Study of dextrin addition on the formation and physicochemical properties of whey protein-stabilized emulsion: Effect of dextrin molecular dimension. Food Hydrocolloids, 2022, 128, 107569.	10.7	14
85	Study on curcumin encapsulated in whole nutritional food model milk: Effect of fat content, and partitioning situation. Journal of Functional Foods, 2022, 90, 104990.	3.4	12
86	The role of probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal conditions. Current Research in Food Science, 2022, 5, 581-589.	5.8	10
87	Production, Characterization, Delivery, and Cholesterol-Lowering Mechanism of Phytosterols: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 2483-2494.	5.2	50
88	Functional Performance of Plant Proteins. Foods, 2022, 11, 594.	4.3	82
89	Gut Microbiota Composition in Relation to the Metabolism of Oral Administrated Resveratrol. Nutrients, 2022, 14, 1013.	4.1	13
90	Comparison of Emulsifying Properties of Plant and Animal Proteins in Oil-in-Water Emulsions: Whey, Soy, and RuBisCo Proteins. Food Biophysics, 2022, 17, 409-421.	3.0	17

#	Article	IF	Citations
91	Hesperetin (citrus peel flavonoid aglycone) encapsulation using pea protein–high methoxyl pectin electrostatic complexes: complex optimization and biological activity. Journal of the Science of Food and Agriculture, 2022, , .	3.5	6
92	Characterization of a novel squaleneâ€rich oil: <i>Pachira macrocarpa</i> seed oil. Journal of Food Science, 2022, 87, 1696-1707.	3.1	1
93	Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chemistry, 2022, 387, 132790.	8.2	26
94	A review of multilayer and composite films and coatings for active biodegradable packaging. Npj Science of Food, 2022, 6, 18.	5 . 5	61
95	Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. Nanomaterials, 2022, 12, 1099.	4.1	12
96	Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. Colloids and Interfaces, 2022, 6, 19.	2.1	25
97	Production of Plant-Based Seafood: Scallop Analogs Formed by Enzymatic Gelation of Pea Protein-Pectin Mixtures. Foods, 2022, 11, 851.	4.3	16
98	Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Frontiers in Nutrition, 2022, 9, 859293.	3.7	2
99	Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrasonics Sonochemistry, 2022, 85, 105969.	8.2	32
100	Vitamin A fortification: Recent advances in encapsulation technologies. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2772-2819.	11.7	15
101	Controlling the in vitro gastrointestinal digestion of emulsified lipids by encapsulation within nanocellulose-fortified alginate beads. Food Structure, 2022, 32, 100266.	4.5	5
102	Application of static in vitro digestion models for assessing the bioaccessibility of hydrophobic bioactives: A review. Trends in Food Science and Technology, 2022, 122, 314-327.	15.1	38
103	Fabrication, characterization, and performance of antimicrobial alginate-based films containing thymol-loaded lipid nanoparticles: Comparison of nanoemulsions and nanostructured lipid carriers. International Journal of Biological Macromolecules, 2022, 207, 801-812.	7.5	27
104	Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Advances in Colloid and Interface Science, 2022, 303, 102655.	14.7	37
105	Protective effect of ovalbumin-flavonoid hydrogel on thrombolytic activity and stability of nattokinase. Food Research International, 2022, 156, 111188.	6.2	7
106	Impact of pea protein-inulin conjugates prepared via the Maillard reaction using a combination of ultrasound and pH-shift treatments on physical and oxidative stability of algae oil emulsions. Food Research International, 2022, 156, 111161.	6.2	20
107	Effects of extrusion and enzymatic debranching on the structural characteristics and digestibility of corn and potato starches. Food Bioscience, 2022, 47, 101679.	4.4	18
108	Effects of particle size distribution of potato starch granules on rheological properties of model dough underwent multiple freezing-thawing cycles. Food Research International, 2022, 156, 111112.	6.2	6

#	Article	IF	CITATIONS
109	Enhancing the physicochemical performance of myofibrillar gels using Pickering emulsion fillers: Rheology, microstructure and stability. Food Hydrocolloids, 2022, 128, 107606.	10.7	29
110	Pea protein isolate-inulin conjugates prepared by pH-shift treatment and ultrasonic-enhanced glycosylation: Structural and functional properties. Food Chemistry, 2022, 384, 132511.	8.2	46
111	Lipid oxidation and in vitro digestion of pickering emulsion based on zein-adzuki bean seed coat polyphenol covalent crosslinking nanoparticles. Food Chemistry, 2022, 386, 132513.	8.2	25
112	Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chemistry, 2022, 386, 132787.	8.2	20
113	Fabrication, characterization and in vitro digestive behavior of Pickering emulsion incorporated with dextrin. Food Chemistry, 2022, 384, 132528.	8.2	12
114	Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chemistry, 2022, 384, 132589.	8.2	23
115	Purification, characterization, and emulsification stability of high- and low-molecular-weight fractions of polysaccharide conjugates extracted from green tea. Food Hydrocolloids, 2022, 129, 107667.	10.7	22
116	Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 738-779.	11.7	16
117	Lactobacillus rhamnosus Encapsulated in Alginate/Chitosan Microgels Manipulates the Gut Microbiome to Ameliorate Salt-Induced Hepatorenal Injury. Frontiers in Nutrition, 2022, 9, 872808.	3.7	6
118	Impact of alginate block type on the structure and physicochemical properties of curcumin-loaded complex biopolymer nanoparticles. LWT - Food Science and Technology, 2022, 162, 113435.	5.2	7
119	Properties and Functionality of Plant-Based Ingredients. , 2022, , 23-88.		2
120	Meat and Fish Alternatives. , 2022, , 285-339.		1
121	Processes and Equipment to Create Plant-Based Foods. , 2022, , 89-153.		1
122	Comparison of the Cooking Behaviors of Meat and Plant-Based Meat Analogues: Appearance, Texture, and Fluid Holding Properties. ACS Food Science & Technology, 2022, 2, 844-851.	2.7	24
123	Mechanism of low-salt surimi gelation induced by microwave heating combined with l-arginine and transglutaminase: On the basis of molecular docking between l-arginine and myosin heavy chain. Food Chemistry, 2022, 391, 133184.	8.2	26
124	Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions. LWT - Food Science and Technology, 2022, 163, 113499.	5.2	16
125	Recent developments in industrial applications of nanoemulsions. Advances in Colloid and Interface Science, 2022, 304, 102685.	14.7	48
126	Construction of plant-based adipose tissue using high internal phase emulsions and emulsion gels. Innovative Food Science and Emerging Technologies, 2022, 78, 103016.	5.6	19

#	Article	IF	CITATIONS
127	Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT - Food Science and Technology, 2022, 162, 113513.	5.2	16
128	Structural transformation and oil absorption of starches with different crystal types during frying. Food Chemistry, 2022, 390, 133115.	8.2	11
129	Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chemistry, 2022, 391, 133224.	8.2	36
130	Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. Molecules, 2022, 27, 3168.	3.8	26
131	Impact of Heat Treatment on the Structure and Properties of the Plant Protein Corona Formed around TiO ₂ Nanoparticles. Journal of Agricultural and Food Chemistry, 2022, 70, 6540-6551.	5.2	10
132	Gut Microbiome: The Cornerstone of Life and Health. , 2022, 2022, 1-3.		37
133	Preparation, Characteristics, and Advantages of Plant Protein-Based Bioactive Molecule Delivery Systems. Foods, 2022, 11, 1562.	4.3	14
134	Effect of Homogenization Modified Rice Protein on the Pasting Properties of Rice Starch. Foods, 2022, 11, 1601.	4.3	7
135	Functional and physical properties of commercial pulse proteins compared to soy derived protein. Future Foods, 2022, 6, 100155.	5.4	19
136	Development and application of hydrophilic-hydrophobic dual-protein Pickering emulsifiers: EGCG-modified caseinate-zein complexes. Food Research International, 2022, 157, 111451.	6.2	15
137	Nano-enabled plant-based colloidal delivery systems for bioactive agents in foods: Design, formulation, and application. Advances in Colloid and Interface Science, 2022, 305, 102709.	14.7	17
138	Encapsulation of flavonoids in foods for diabetics: The emerging paradigm for an effective therapy. Trends in Food Science and Technology, 2022, 127, 198-206.	15.1	8
139	Insight of rheology, water distribution and in vitro digestive behavior of starch based-emulsion gel: Impact of potato starch concentration. Food Hydrocolloids, 2022, 132, 107859.	10.7	25
140	NMR Analysis of Lipid Oxidation in Flaxseed Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2022, 70, 8417-8429.	5.2	4
141	Fabrication, Structural and Emulsifying Properties of Egg White Protein-Dextran Conjugates through Maillard Reaction. Food Biophysics, 2022, 17, 650-661.	3.0	7
142	Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Advances in Colloid and Interface Science, 2022, 307, 102734.	14.7	17
143	Utilization of emulsion technology to create plant-based adipose tissue analogs: Soy-based high internal phase emulsions. Food Structure, 2022, 33, 100290.	4.5	15
144	Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Advances in Colloid and Interface Science, 2022, 306, 102726.	14.7	44

#	Article	IF	CITATIONS
145	Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Research International, 2022, 159, 111574.	6.2	8
146	Physicochemical characterization, emulsifying and antioxidant properties of the polysaccharide conjugates from Chin brick tea (Camellia sinensis). Food Chemistry, 2022, 395, 133625.	8.2	13
147	Polyphenol oxidase inhibited by 4-hydroxycinnamic acid and naringenin: Multi-spectroscopic analyses and molecular docking simulation at different pH. Food Chemistry, 2022, 396, 133662.	8.2	13
148	Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocolloids, 2022, 133, 107938.	10.7	11
149	<i>In-vivo</i> biotransformation of citrus functional components and their effects on health. Critical Reviews in Food Science and Nutrition, 2021, 61, 756-776.	10.3	30
150	Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Critical Reviews in Food Science and Nutrition, 2021, 61, 1049-1064.	10.3	70
151	Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocolloids, 2021, 110, 106141.	10.7	50
152	Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering, 2021, 291, 110228.	5.2	28
153	The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified plant-based milks. Food Hydrocolloids, 2021, 112, 106310.	10.7	27
154	Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocolloids, 2021, 113, 106451.	10.7	65
155	Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments. Carbohydrate Polymers, 2021, 255, 117364.	10.2	66
156	Multifunctional halochromic packaging materials: Saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocolloids, 2021, 111, 106237.	10.7	141
157	Formulation of alginate/carrageenan microgels to encapsulate, protect and release immunoglobulins: Egg Yolk IgY. Food Hydrocolloids, 2021, 112, 106349.	10.7	50
158	Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocolloids, 2021, 111, 106377.	10.7	71
159	Maillard reaction products for strengthening the recovery of trans-resveratrol from the muscat grape pomace by alkaline extraction and foam fractionation. Separation and Purification Technology, 2021, 256, 117754.	7.9	7
160	Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry, 2021, 339, 128145.	8.2	88
161	Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids, 2021, 111, 106404.	10.7	63
162	Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids, 2021, 113, 106473.	10.7	65

#	Article	IF	CITATIONS
163	Fabrication and characterization of whey protein isolates- lotus seedpod proanthocyanin conjugate: Its potential application in oxidizable emulsions. Food Chemistry, 2021, 346, 128680.	8.2	30
164	Chitin nanocrystals reduce lipid digestion and \hat{l}^2 -carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocolloids, 2021, 113, 106494.	10.7	37
165	Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydrate Polymers, 2021, 255, 117488.	10.2	126
166	A new approach for drying of nanostructured lipid carriers (NLC) by spray-drying and using sodium chloride as the excipient. Journal of Drug Delivery Science and Technology, 2021, 61, 102212.	3.0	17
167	The effect of whey protein-puerarin interactions on the formation and performance of protein hydrogels. Food Hydrocolloids, 2021, 113, 106444.	10.7	38
168	Enhancing emulsion functionality using multilayer technology: Coating lipid droplets with saponin-polypeptide-polysaccharide layers by electrostatic deposition. Food Research International, 2021, 140, 109864.	6.2	15
169	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 2021, 12, 383-406.	9.9	41
170	A review of structural transformations and properties changes in starch during thermal processing of foods. Food Hydrocolloids, 2021, 113, 106543.	10.7	61
171	Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology. Annual Review of Food Science and Technology, 2021, 12, 1-28.	9.9	41
172	Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chemistry, 2021, 342, 128314.	8.2	31
173	Spray drying and rehydration of macadamia oil-in-water emulsions: Impact of macadamia protein isolate to chitosan hydrochloride ratio. Food Chemistry, 2021, 342, 128380.	8.2	19
174	Influence of molecular weight of an anionic marine polysaccharide (sulfated fucan) on the stability and digestibility of multilayer emulsions: Establishment of structure-function relationships. Food Hydrocolloids, 2021, 113, 106418.	10.7	19
175	Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. Innovative Food Science and Emerging Technologies, 2021, 67, 102525.	5.6	23
176	Impact of tea polyphenols on the stability of oil-in-water emulsions coated by whey proteins. Food Chemistry, 2021, 343, 128448.	8.2	67
177	Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes. Food Hydrocolloids, 2021, 113, 106445.	10.7	46
178	Comparing DPPP fluorescence and UV based methods to assess oxidation degree of krill oil-in-water emulsions. Food Chemistry, 2021, 339, 127898.	8.2	8
179	Development of antibacterial nanoemulsions incorporating thyme oil: Layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chemistry, 2021, 339, 128016.	8.2	43
180	Utilization of multilayer-technology to enhance encapsulation efficiency and osmotic gradient tolerance of iron-loaded W1/O/W2 emulsions: Saponin-chitosan coatings. Food Hydrocolloids, 2021, 112, 106334.	10.7	19

#	Article	lF	CITATIONS
181	Food-grade titanium dioxide particles decrease the bioaccessibility of iron released from spinach leaves in simulated human gastrointestinal tract. Environmental Science: Nano, 2021, 8, 1269-1282.	4.3	2
182	Nanoemulsion design for the delivery of omega-3 fatty acids., 2021,, 295-319.		1
183	A self-assembled amphiphilic polysaccharide-based co-delivery system for egg white derived peptides and curcumin with oral bioavailability enhancement. Food and Function, 2021, 12, 10512-10523.	4.6	7
184	Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research, 2021, 81, 101081.	11.6	96
185	Effect of sesamol on the physical and chemical stability of plant-based flaxseed oil-in-water emulsions stabilized by proteins or phospholipids. Food and Function, 2021, 12, 2090-2101.	4.6	19
186	Encapsulation of lipophilic polyphenols in plant-based nanoemulsions: impact of carrier oil on lipid digestion and curcumin, resveratrol and quercetin bioaccessibility. Food and Function, 2021, 12, 3420-3432.	4.6	46
187	A systematic assessment of structural heterogeneity and IgG/IgE-binding of ovalbumin. Food and Function, 2021, 12, 8130-8140.	4.6	5
188	The Formation of Chitosan-Coated Rhamnolipid Liposomes Containing Curcumin: Stability and In Vitro Digestion. Molecules, 2021, 26, 560.	3.8	20
189	Lipid Digestion as a Colloid and Interface Phenomena. , 2021, , 29-45.		1
190	Impact of Polyunsaturated Fatty Acid Dilution and Antioxidant Addition on Lipid Oxidation Kinetics in Oil/Water Emulsions. Journal of Agricultural and Food Chemistry, 2021, 69, 750-755.	5.2	9
191	In vitro digestion of edible nanostructured lipid carriers: Impact of a Candelilla wax gelator on performance. Food Research International, 2021, 140, 110060.	6.2	11
192	Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods, 2021, 10, 365.	4.3	32
193	Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D ₃ in the Simulated Human Gastrointestinal Tract. Journal of Agricultural and Food Chemistry, 2021, 69, 2855-2863.	5.2	6
194	Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	66
195	Influence of type of natural emulsifier and microfluidization conditions on Capsicum oleoresin nanoemulsions properties and stability. Journal of Food Process Engineering, 2021, 44, e13660.	2.9	11
196	Standardized methods for testing the quality attributes of plantâ€based foods: Milk and cream alternatives. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2206-2233.	11.7	28
197	Type III Resistant Starch Prepared from Debranched Starch: Structural Changes under Simulated Saliva, Gastric, and Intestinal Conditions and the Impact on Short-Chain Fatty Acid Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2595-2602.	5.2	40
198	Pickering Emulsions <i>via</i> Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12581-12593.	8.0	37

#	Article	IF	CITATIONS
199	Fabrication of Oil-in-Water Emulsions with Whey Protein Isolate–Puerarin Composites: Environmental Stability and Interfacial Behavior. Foods, 2021, 10, 705.	4.3	12
200	Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science and Technology, 2021, 109, 322-339.	15.1	72
201	Fortification of Plant-Based Milk with Calcium May Reduce Vitamin D Bioaccessibility: An <i>In Vitro</i> Digestion Study. Journal of Agricultural and Food Chemistry, 2021, 69, 4223-4233.	5.2	26
202	In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegetables using excipient nanoemulsions: Impact of lipid content. Food Research International, 2021, 141, 110162.	6.2	26
203	Development of nanoparticle-delivery systems for antiviral agents: A review. Journal of Controlled Release, 2021, 331, 30-44.	9.9	63
204	<i>In Vitro</i> Gastrointestinal Stability of Lipophilic Polyphenols is Dependent on their Oil–Water Partitioning in Emulsions: Studies on Curcumin, Resveratrol, and Quercetin. Journal of Agricultural and Food Chemistry, 2021, 69, 3340-3350.	5.2	45
205	Identification of 4′-Demethyltangeretin as a Major Urinary Metabolite of Tangeretin in Mice and Its Anti-inflammatory Activities. Journal of Agricultural and Food Chemistry, 2021, 69, 4381-4391.	5.2	10
206	Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends in Food Science and Technology, 2021, 109, 398-412.	15.1	30
207	Ameliorative effects of L-arginine? On heat-induced phase separation of Aristichthys nobilis myosin are associated with the absence of ordered secondary structures of myosin. Food Research International, 2021, 141, 110154.	6.2	6
208	Introduction. Annual Review of Food Science and Technology, 2021, 12, i-ii.	9.9	0
209	Analysis of porous structure of potato starch granules by low-field NMR cryoporometry and AFM. International Journal of Biological Macromolecules, 2021, 173, 307-314.	7.5	19
210	Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules, 2021, 26, 2463.	3.8	81
211	Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods, 2021, 10, 812.	4.3	119
212	Investigate the adverse effects of foliarly applied antimicrobial nanoemulsion (carvacrol) on spinach. LWT - Food Science and Technology, 2021, 141, 110936.	5.2	12
213	An insight into heat-induced gelation of whey protein isolate–lactose mixed and conjugate solutions: rheological behavior, microstructure, and molecular forces. European Food Research and Technology, 2021, 247, 1711-1724.	3.3	9
214	Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science and Technology, 2021, 110, 687-699.	15.1	109
215	Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials, 2021, 11, 1331.	4.1	69
216	Electrospun antimicrobial materials: Advanced packaging materials for food applications. Trends in Food Science and Technology, 2021, 111, 520-533.	15.1	39

#	Article	IF	CITATIONS
217	Enzymatic and Nonenzymatic Conjugates of Lactoferrin and (â^')-Epigallocatechin Gallate: Formation, Structure, Functionality, and Allergenicity. Journal of Agricultural and Food Chemistry, 2021, 69, 6291-6302.	5.2	59
218	Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophysics, 2021, 16, 355-364.	3.0	15
219	Ability of Sodium Dodecyl Sulfate (SDS) Micelles to Increase the Antioxidant Activity of α-Tocopherol. Journal of Agricultural and Food Chemistry, 2021, 69, 5702-5708.	5.2	14
220	Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. Journal of Colloid and Interface Science, 2021, 589, 388-400.	9.4	39
221	Bio-Based Formulations for Sustainable Applications in Agri-Food-Pharma. Biomolecules, 2021, 11, 768.	4.0	2
222	Sonochemical effects on formation and emulsifying properties of zein-gum Arabic complexes. Food Hydrocolloids, 2021, 114, 106557.	10.7	28
223	Recent Innovations in Emulsion Science and Technology for Food Applications. Journal of Agricultural and Food Chemistry, 2021, 69, 8944-8963.	5.2	73
224	The science of plantâ€based foods: Constructing nextâ€generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4049-4100.	11.7	198
225	Removal of phenylalanine from egg white powder: Two-step enzymatic method combined with activated carbon adsorption. Process Biochemistry, 2021, 104, 101-109.	3.7	7
226	Fabrication of Caseinate Stabilized Thymol Nanosuspensions via the pH-Driven Method: Enhancement in Water Solubility of Thymol. Foods, 2021, 10, 1074.	4.3	24
227	Effect of Annealing on Structural, Physicochemical, and In Vitro Digestive Properties of Starch from <i>Castanopsis sclerophylla</i> . Starch/Staerke, 2021, 73, 2100005.	2.1	14
228	Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules, 2021, 26, 3984.	3.8	22
229	Dietary Tangeretin Alleviated Dextran Sulfate Sodium-Induced Colitis in Mice via Inhibiting Inflammatory Response, Restoring Intestinal Barrier Function, and Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 7663-7674.	5.2	40
230	Protein corona formation around inorganic nanoparticles: Food plant proteins-TiO2 nanoparticle interactions. Food Hydrocolloids, 2021, 115, 106594.	10.7	37
231	Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chemistry, 2021, 348, 129148.	8.2	41
232	A systematic review and metaâ€analysis of the impact of cornelian cherry consumption on blood lipid profiles. Food Science and Nutrition, 2021, 9, 4629-4638.	3.4	8
233	Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends in Food Science and Technology, 2021, 112, 36-49.	15.1	122
234	A brief review of the science behind the design of healthy and sustainable plant-based foods. Npj Science of Food, 2021, 5, 17.	5.5	138

#	Article	lF	CITATIONS
235	Preparation and characterization of porous starch/ \hat{l}^2 -cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Bioscience, 2021, 41, 101081.	4.4	13
236	Preparation of okara cellulose hydrogels using ionic liquids: Structure, properties, and performance. Journal of Molecular Liquids, 2021, 331, 115744.	4.9	24
237	The nutritional and physicochemical properties of whole corn slurry prepared by a novel industry-scale microfluidizer system. LWT - Food Science and Technology, 2021, 144, 111096.	5.2	18
238	Thermal Inactivation Kinetics of Kudzu (Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods, 2021, 10, 1320.	4.3	8
239	The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chemistry, 2021, 348, 129032.	8.2	28
240	Nano-enabled-fortification of salad dressings with curcumin: Impact of nanoemulsion-based delivery systems on physicochemical properties. LWT - Food Science and Technology, 2021, 145, 111299.	5.2	9
241	Effects of Three Types of Polymeric Proanthocyanidins on Physicochemical and In Vitro Digestive Properties of Potato Starch. Foods, 2021, 10, 1394.	4.3	11
242	Encapsulation of bifidobacterium in alginate microgels improves viability and targeted gut release. Food Hydrocolloids, 2021, 116, 106634.	10.7	57
243	Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems. Foods, 2021, 10, 1566.	4.3	43
244	INFOGEST inter-laboratory recommendations for assaying gastric and pancreatic lipases activities prior to in vitro digestion studies. Journal of Functional Foods, 2021, 82, 104497.	3.4	22
245	Nutraceutical-fortified plant-based milk analogs: Bioaccessibility of curcumin-loaded almond, cashew, coconut, and oat milks. LWT - Food Science and Technology, 2021, 147, 111517.	5.2	30
246	Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers. International Journal of Biological Macromolecules, 2021, 182, 373-384.	7.5	37
247	Rheological behaviors and physicochemical changes of doughs reconstituted from potato starch with different sizes and gluten. Food Research International, 2021, 145, 110397.	6.2	21
248	Use of Micellar Delivery Systems to Enhance Curcumin's Stability and Microbial Photoinactivation Capacity. Foods, 2021, 10, 1777.	4.3	12
249	Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion. Food Research International, 2021, 145, 110425.	6.2	61
250	Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clinical, Cosmetic and Investigational Dermatology, 2021, Volume 14, 867-887.	1.8	41
251	Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocolloids, 2021, 117, 106679.	10.7	63
252	Encapsulation of fruit peel proanthocyanidins in biopolymer microgels: Relationship between structural characteristics and encapsulation/release properties. Food Hydrocolloids, 2021, 117, 106693.	10.7	10

#	Article	IF	CITATIONS
253	Effect of annealing and heat-moisture pretreatments on the oil absorption of normal maize starch during frying. Food Chemistry, 2021, 353, 129468.	8.2	25
254	Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocolloids, 2021, 117, 106698.	10.7	44
255	Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science and Technology, 2021, 114, 70-82.	15.1	160
256	Effect of New Frying Technology on Starchy Food Quality. Foods, 2021, 10, 1852.	4.3	20
257	Physical modification on the in vitro digestibility of Tartary buckwheat starch: Repeated retrogradation under isothermal and non-isothermal conditions. International Journal of Biological Macromolecules, 2021, 184, 1026-1034.	7.5	15
258	Okara nanocellulose fabricated using combined chemical and mechanical treatments: Structure and properties. Journal of Molecular Liquids, 2021, 335, 116231.	4.9	22
259	Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches. LWT - Food Science and Technology, 2021, 148, 111713.	5.2	10
260	Effect of chitosan nanoparticles loaded with curcumin on the quality of Schizothorax prenanti surimi. Food Bioscience, 2021, 42, 101178.	4.4	5
261	Fabrication and characterization of antimicrobial biopolymer films containing essential oil-loaded microemulsions or nanoemulsions. Food Hydrocolloids, 2021, 117, 106733.	10.7	67
262	Development of Salt- and Gastric-Resistant Whey Protein Isolate Stabilized Emulsions in the Presence of Cinnamaldehyde and Application in Salad Dressing. Foods, 2021, 10, 1868.	4.3	8
263	Impact of Polyphenol Interactions with Titanium Dioxide Nanoparticles on Their Bioavailability and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 9661-9670.	5.2	21
264	Effects of hydroxyethyl cellulose and sodium alginate edible coating containing asparagus waste extract on postharvest quality of strawberry fruit. LWT - Food Science and Technology, 2021, 148, 111770.	5.2	44
265	Investigation of Protein Denaturation and Textural Changes of Atlantic Salmon (Salmo salar) During Simulated Cooking. Food Biophysics, 2021, 16, 512-519.	3.0	7
266	Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Food Chemistry, 2021, 355, 129686.	8.2	69
267	Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Current Opinion in Colloid and Interface Science, 2021, 56, 101512.	7.4	38
268	Enhancing the oxidative stability of algal oil emulsions by adding sweet orange oil: Effect of essential oil concentration. Food Chemistry, 2021, 355, 129508.	8.2	30
269	Effects of creeping fig seed polysaccharide on pasting, rheological, textural properties and in vitro digestibility of potato starch. Food Hydrocolloids, 2021, 118, 106810.	10.7	34
270	Multifunctional nanocomposite active packaging materials: Immobilization of quercetin, lactoferrin, and chitosan nanofiber particles in gelatin films. Food Hydrocolloids, 2021, 118, 106747.	10.7	59

#	Article	IF	Citations
271	Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation: Enhancement of carotenoid loading capacity and stability. Journal of Functional Foods, 2021, 84, 104601.	3.4	19
272	Polysaccharide conjugates from Chin brick tea (Camellia sinensis) improve the physicochemical stability and bioaccessibility of \hat{l}^2 -carotene in oil-in-water nanoemulsions. Food Chemistry, 2021, 357, 129714.	8.2	33
273	Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 11006-11014.	5.2	15
274	Effects of Molecular Distillation on the Chemical Components, Cleaning, and Antibacterial Abilities of Four Different Citrus Oils. Frontiers in Nutrition, 2021, 8, 731724.	3.7	7
275	Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science and Technology, 2021, 116, 492-500.	15.1	48
276	Improvement of egg yolk powder properties through enzymatic hydrolysis and subcritical fluid extraction. LWT - Food Science and Technology, 2021, 150, 112075.	5.2	14
277	Utilization of sonication-glycation to improve the functional properties of ovalbumin: A high-resolution mass spectrometry study. Food Hydrocolloids, 2021, 119, 106822.	10.7	27
278	Influence of thermal treatment on the physicochemical and functional properties of tea polysaccharide conjugates. LWT - Food Science and Technology, 2021, 150, 111967.	5.2	9
279	Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. Ultrasonics Sonochemistry, 2021, 78, 105717.	8.2	22
280	Comparison of plant-based emulsifier performance in water-in-oil-in-water emulsions: Soy protein isolate, pectin and gum Arabic. Journal of Food Engineering, 2021, 307, 110625.	5. 2	26
281	Fabrication and characterization of the W/O/W multiple emulsion through oleogelation of oil. Food Chemistry, 2021, 358, 129856.	8.2	23
282	Changes in the nutritional value, flavor, and antioxidant activity of brown glutinous rice during fermentation. Food Bioscience, 2021, 43, 101273.	4.4	13
283	Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocolloids, 2021, 119, 106812.	10.7	119
284	Encapsulation of quercetin in biopolymer-coated zein nanoparticles: Formation, stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids, 2021, 120, 106980.	10.7	61
285	Impact of rutin on the foaming properties of soybean protein: Formation and characterization of flavonoid-protein complexes. Food Chemistry, 2021, 362, 130238.	8.2	36
286	The combined effects of extrusion and recrystallization treatments on the structural and physicochemical properties and digestibility of corn and potato starch. LWT - Food Science and Technology, 2021, 151, 112238.	5.2	20
287	Preparation of V-type cold water-swelling starch by ethanolic extrusion. Carbohydrate Polymers, 2021, 271, 118400.	10.2	9
288	Physicochemical and functional properties of lactoferrin-hyaluronic acid complexes: Effect of non-covalent and covalent interactions. LWT - Food Science and Technology, 2021, 151, 112121.	5.2	15

#	Article	IF	CITATIONS
289	Digestibility and gastrointestinal fate of meat versus plant-based meat analogs: An in vitro comparison. Food Chemistry, 2021, 364, 130439.	8.2	74
290	Selective adsorption of egg white hydrolysates onto activated carbon: Establishment of physicochemical mechanisms for removing phenylalanine. Food Chemistry, 2021, 364, 130285.	8.2	4
291	Robust and recyclable magnetic nanobiocatalysts for extraction of anthocyanin from black rice. Food Chemistry, 2021, 364, 130447.	8.2	11
292	Whey protein–polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry, 2021, 365, 130455.	8.2	60
293	Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects. Food and Function, 2021, 12, 6576-6587.	4.6	35
294	Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 2021, 50, 11979-12012.	38.1	17
295	Higher Oxidative Stability of Alpha-linolenic Acid Than Linoleic Acid in Nanoemulsions: a Comparison Between Bulk Flaxseed Oil and its O/W Nanoemulsions. Food Biophysics, 2021, 16, 203-213.	3.0	5
296	Bioaccessibility of oil-soluble vitamins (A, D, E) in plant-based emulsions: impact of oil droplet size. Food and Function, 2021, 12, 3883-3897.	4.6	20
297	Impact of encapsulating a probiotic (<i>Pediococcus pentosaceus</i> Li05) within gastro-responsive microgels on <i>Clostridium difficile</i> infections. Food and Function, 2021, 12, 3180-3190.	4.6	19
298	Methods for Testing the Quality Attributes of Plant-Based Foods: Meat- and Processed-Meat Analogs. Foods, 2021, 10, 260.	4.3	60
299	Biopolymer Additives Enhance Tangeretin Bioavailability in Emulsion-Based Delivery Systems: An <i>In Vitro</i> and In <i>Vivo</i> Study. Journal of Agricultural and Food Chemistry, 2021, 69, 730-740.	5.2	24
300	Bioinspired Eggosomes with Dual Stimuli-Responsiveness. ACS Applied Bio Materials, 2021, 4, 7825-7835.	4.6	3
301	Yeast cell-derived delivery systems for bioactives. Trends in Food Science and Technology, 2021, 118, 362-373.	15.1	21
302	The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs. Trends in Food Science and Technology, 2021, 118, 207-229.	15.1	75
303	Physicochemical, structural and adhesion properties of walnut protein isolate-xanthan gum composite adhesives using walnut protein modified by ethanol. International Journal of Biological Macromolecules, 2021, 192, 644-653.	7.5	24
304	Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends in Food Science and Technology, 2021, 118, 459-470.	15.1	15
305	Plant-Based Colloidal Delivery Systems for Bioactives. Molecules, 2021, 26, 6895.	3.8	19
306	Comparison of Lutein Bioaccessibility from Dietary Supplement-Excipient Nanoemulsions and Nanoemulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2021, 69, 13925-13932.	5.2	17

#	Article	IF	CITATIONS
307	Green Preparation of Robust Hydrophobic \hat{l}^2 -Cyclodextrin/Chitosan Sponges for Efficient Removal of Oil from Water. Langmuir, 2021, 37, 14380-14389.	3.5	7
308	Formation of Antioxidant Multilayered Coatings for the Prevention of Lipid and Protein Oxidation in Oil-in-Water Emulsions: <i>Lycium barbarum</i> Polysaccharides and Whey Proteins. Journal of Agricultural and Food Chemistry, 2021, 69, 15691-15698.	5.2	8
309	Application of Nanotechnology to Improve the Performance of Biodegradable Biopolymer-Based Packaging Materials. Polymers, 2021, 13, 4399.	4.5	30
310	A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies, 2020, 51, 45-55.	2.5	72
311	Biosynthesis of citrus flavonoids and their health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 566-583.	10.3	130
312	Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. Journal of Dispersion Science and Technology, 2020, 41, 207-213.	2.4	16
313	Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 2020, 38, 107287.	11.7	163
314	One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 2020, 100, 105381.	10.7	122
315	Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocolloids, 2020, 99, 105334.	10.7	190
316	Lotus seedpod proanthocyanidin-whey protein complexes: Impact on physical and chemical stability of \hat{l}^2 -carotene-nanoemulsions. Food Research International, 2020, 127, 108738.	6.2	43
317	Effect of pullulan on oil absorption and structural organization of native maize starch during frying. Food Chemistry, 2020, 309, 125681.	8.2	32
318	Analyses on the binding interaction between rice glutelin and conjugated linoleic acid by multi-spectroscopy and computational docking simulation. Journal of Food Science and Technology, 2020, 57, 886-894.	2.8	5
319	Kinetic parameters of thiamine degradation in NASA spaceflight foods determined by the endpoints method for long-term storage. Food Chemistry, 2020, 302, 125365.	8.2	8
320	Multi-phase detection of antioxidants using surface-enhanced Raman spectroscopy with a gold nanoparticle-coated fiber. Talanta, 2020, 206, 120197.	5 . 5	7
321	Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition, 2020, 60, 2083-2097.	10.3	94
322	Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food Chemistry, 2020, 303, 125401.	8.2	64
323	Microwave pretreatment promotes the annealing modification of rice starch. Food Chemistry, 2020, 304, 125432.	8.2	58
324	Improving instant properties of kudzu powder by extrusion treatment and its related mechanism. Food Hydrocolloids, 2020, 101, 105475.	10.7	30

#	Article	IF	CITATIONS
325	Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Research International, 2020, 127, 108768.	6.2	33
326	Characterization of electrostatic interactions and complex formation of $\pm \pounds$ -poly-glutamic acid (PGA) and \pm -poly-l-lysine (PLL) in aqueous solutions. Food Research International, 2020, 128, 108781.	6.2	11
327	Preparation and characterization of octenyl succinate \hat{l}^2 -limit dextrin. Carbohydrate Polymers, 2020, 229, 115527.	10.2	10
328	Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. International Journal of Food Science and Technology, 2020, 55, 1924-1934.	2.7	38
329	Amino acid-amidated pectin: Preparation and characterization. Food Chemistry, 2020, 309, 125768.	8.2	29
330	Enhancing Efficacy, Performance, and Reliability of Cannabis Edibles: Insights from Lipid Bioavailability Studies. Annual Review of Food Science and Technology, 2020, 11, 45-70.	9.9	22
331	Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocolloids, 2020, 103, 105651.	10.7	43
332	Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118023.	3.9	48
333	Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food and Function, 2020, 11, 174-186.	4.6	38
334	Suppression mechanism of l-arginine in the heat-induced aggregation of bighead carp (Aristichthys) Tj ETQq0 0 0 Hydrocolloids, 2020, 102, 105596.	rgBT /Ove 10.7	erlock 10 Tf 5 39
335	Structural modification and functional improvement of starch nanoparticles using vacuum cold plasma. International Journal of Biological Macromolecules, 2020, 145, 197-206.	7.5	33
336	Modulation of Physicochemical Characteristics of Pickering Emulsions: Utilization of Nanocellulose- and Nanochitin-Coated Lipid Droplet Blends. Journal of Agricultural and Food Chemistry, 2020, 68, 603-611.	5.2	52
337	Fabrication and characterization of W/O/W emulsions with crystalline lipid phase. Journal of Food Engineering, 2020, 273, 109826.	5.2	27
338	Pickering emulsions with enhanced storage stabilities by using hybrid \hat{l}^2 -cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.	10.2	41
339	Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food and Function, 2020, 11, 187-199.	4.6	50
340	Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocolloids, 2020, 102, 105569.	10.7	158
341	Effects of water activity, sugars, and proteins on lipid oxidative stability of low moisture model crackers. Food Research International, 2020, 130, 108844.	6.2	17
342	Modulation of physicochemical stability and bioaccessibility of \hat{l}^2 -carotene using alginate beads and emulsion stabilized by scallop (Patinopecten yessoensis) gonad protein isolates. Food Research International, 2020, 129, 108875.	6.2	20

#	Article	IF	CITATIONS
343	Synergistic effects of binary surfactant mixtures in the removal of Cr(VI) from its aqueous solution by foam fractionation. Separation and Purification Technology, 2020, 237, 116346.	7.9	17
344	Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions. Food Chemistry, 2020, 310, 125828.	8.2	89
345	Multistarter fermentation of glutinous rice with Fu brick tea: Effects on microbial, chemical, and volatile compositions. Food Chemistry, 2020, 309, 125790.	8.2	24
346	Binding mechanism and antioxidant capacity of selected phenolic acid - \hat{l}^2 -casein complexes. Food Research International, 2020, 129, 108802.	6.2	39
347	Current status in our understanding of physicochemical basis of bioaccessibility. Current Opinion in Food Science, 2020, 31, 57-62.	8.0	21
348	Application of Flow Cytometry As Novel Technology in Studying the Effect of Droplet Size on Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 567-573.	5.2	11
349	Gliadin Nanoparticles Pickering Emulgels for \hat{l}^2 -Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules, 2020, 25, 4188.	3.8	21
350	Nanocomposite films consisting of functional nanoparticles (TiO2 and ZnO) embedded in 4A-Zeolite and mixed polymer matrices (gelatin and polyvinyl alcohol). Food Research International, 2020, 137, 109716.	6.2	49
351	Exploring the effects of carrier oil type on in vitro bioavailability of \hat{l}^2 -carotene: A cell culture study of carotenoid-enriched nanoemulsions. LWT - Food Science and Technology, 2020, 134, 110224.	5.2	32
352	Annealing treatment of amylose and amylopectin extracted from rice starch. International Journal of Biological Macromolecules, 2020, 164, 3496-3500.	7.5	29
353	Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydrate Polymers, 2020, 250, 116890.	10.2	75
354	Digestion of animal- and plant-based proteins encapsulated in \hat{l}^2 -carrageenan/protein beads under simulated gastrointestinal conditions. Food Research International, 2020, 137, 109662.	6.2	20
355	Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science and Technology, 2020, 103, 293-303.	15.1	195
356	Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Advances in Colloid and Interface Science, 2020, 282, 102211.	14.7	47
357	Effect of thermal processing for rutin preservation on the properties of phenolics & mp; starch in Tartary buckwheat achenes. International Journal of Biological Macromolecules, 2020, 164, 1275-1283.	7.5	17
358	Impact of Phytic Acid on the Physical and Oxidative Stability of Protein-Stabilized Oil-in-Water Emulsions. Food Biophysics, 2020, 15, 433-441.	3.0	11
359	Nanotechnology Approaches for Improving the Healthiness and Sustainability of the Modern Food Supply. ACS Omega, 2020, 5, 29623-29630.	3.5	34

360 Antifatigue effect of functional cookies fortified with mushroom powder (<i>Tricholoma) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td (No. 1) and 10 Tf 50

#	Article	IF	Citations
361	Impact of pH, ferrous ions, and tannic acid on lipid oxidation in plant-based emulsions containing saponin-coated flaxseed oil droplets. Food Research International, 2020, 136, 109618.	6.2	19
362	Microencapsulation of an essential oil (cinnamon oil) by spray drying: Effects of wall materials and storage conditions on microcapsule properties. Journal of Food Processing and Preservation, 2020, 44, e14805.	2.0	23
363	Application of nanoemulsionâ€based approaches for improving the quality and safety of muscle foods: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2677-2700.	11.7	57
364	Identification of Xanthomicrol as a Major Metabolite of 5-Demethyltangeretin in Mouse Gastrointestinal Tract and Its Inhibitory Effects on Colon Cancer Cells. Frontiers in Nutrition, 2020, 7, 103.	3.7	6
365	Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases. Journal of Agricultural and Food Chemistry, 2020, 68, 9205-9212.	5.2	37
366	Sonochemical effects on the structure and antioxidant activity of egg white protein–tea polyphenol conjugates. Food and Function, 2020, 11, 7084-7094.	4.6	61
367	Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules. LWT - Food Science and Technology, 2020, 133, 109954.	5.2	23
368	Factors impacting lipid digestion and \hat{l}^2 -carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil droplet concentration. Food and Function, 2020, 11, 7126-7137.	4.6	41
369	Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil. Food and Function, 2020, 11, 9936-9946.	4.6	18
370	Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Research International, 2020, 137, 109739.	6.2	48
371	Design principles of oilâ€inâ€water emulsions with functionalized interfaces: Mixed, multilayer, and covalent complex structures. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3159-3190.	11.7	59
372	In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46609-46620.	8.0	21
373	Future foods: Is it possible to design a healthier and more sustainable food supply?. Nutrition Bulletin, 2020, 45, 341-354.	1.8	40
374	Inhibition of Droplet Growth in Model Beverage Emulsions Stabilized Using Poly (ethylene glycol) Alkyl Ether Surfactants Having Various Hydrophilic Head Sizes: Impact of Ester Gum. Applied Sciences (Switzerland), 2020, 10, 5588.	2.5	3
375	Inhibition of Lipid and Protein Oxidation in Whey-Protein-Stabilized Emulsions Using a Natural Antioxidant: Black Rice Anthocyanins. Journal of Agricultural and Food Chemistry, 2020, 68, 10149-10156.	5.2	43
376	Foam fractionation for promoting rhamnolipids production by Pseudomonas aeruginosa D1 using animal fat hydrolysate as carbon source and its application in intensifying phytoremediation. Chemical Engineering and Processing: Process Intensification, 2020, 158, 108177.	3.6	15
377	Fabrication of antioxidant emulsifiers from natural ingredients: Conjugation of egg white proteins with catechin and chlorogenic acid. Food Hydrocolloids, 2020, 108, 106019.	10.7	43
378	Headspace Characterization and Quantification of Aromatic Organosulfur Compounds in Garlic Extracts Using Surface-Enhanced Raman Scattering with a Mirror-in-a-Cap Substrate. Journal of AOAC INTERNATIONAL, 2020, 103, 1201-1207.	1.5	0

#	Article	IF	CITATIONS
379	The chemopreventive effect of 5-demethylnobiletin, a unique citrus flavonoid, on colitis-driven colorectal carcinogenesis in mice is associated with its colonic metabolites. Food and Function, 2020, 11, 4940-4952.	4.6	23
380	Utilization of plant-based protein-polyphenol complexes to form and stabilize emulsions: Pea proteins and grape seed proanthocyanidins. Food Chemistry, 2020, 329, 127219.	8.2	88
381	Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Nonâ€Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. Small, 2020, 16, e2001858.	10.0	60
382	Impact of pesticide polarity and lipid phase dimensions on the bioaccessibility of pesticides in agricultural produce consumed with model fatty foods. Food and Function, 2020, 11 , 6028-6037.	4.6	5
383	Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 2020, 109, 106083.	10.7	54
384	Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocolloids, 2020, 109, 106090.	10.7	30
385	Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111202.	5.0	65
386	Encapsulation of emulsions by a novel delivery system of fluid coreâ€"hard shell biopolymer particles to retard lipid oxidation. Food and Function, 2020, 11, 5788-5798.	4.6	10
387	Synergistic anticancer effects of curcumin and 3',4'â€didemethylnobiletin in combination on colon cancer cells. Journal of Food Science, 2020, 85, 1292-1301.	3.1	15
388	Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules, 2020, 25, 1161.	3.8	79
389	Protection of \hat{I}^2 -Carotene from Chemical Degradation in Emulsion-Based Delivery Systems Using Scallop (Patinopecten yessoensis) Gonad Protein Isolates. Food and Bioprocess Technology, 2020, 13, 680-692.	4.7	14
390	Emulsions stabilized by inorganic nanoclays and surfactants: Stability, viscosity, and implications for applications. Inorganica Chimica Acta, 2020, 508, 119566.	2.4	28
391	Advances in conversion of natural biopolymers: A reactive extrusion (REX)–enzyme-combined strategy for starch/protein-based food processing. Trends in Food Science and Technology, 2020, 99, 167-180.	15.1	56
392	Influence of Protein Type on the Antimicrobial Activity of LAE Alone or in Combination with Methylparaben. Foods, 2020, 9, 270.	4.3	8
393	Formulation of More Efficacious Curcumin Delivery Systems Using Colloid Science: Enhanced Solubility, Stability, and Bioavailability. Molecules, 2020, 25, 2791.	3.8	130
394	Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends in Food Science and Technology, 2020, 103, 78-93.	15.1	54
395	Mixed plant-based emulsifiers inhibit the oxidation of proteins and lipids in walnut oil-in-water emulsions: Almond protein isolate-camellia saponin. Food Hydrocolloids, 2020, 109, 106136.	10.7	46
396	The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill. Journal of Cereal Science, 2020, 92, 102927.	3.7	17

#	Article	IF	CITATIONS
397	Supernatant starch fraction of corn starch and its emulsifying ability: Effect of the amylose content. Food Hydrocolloids, 2020, 103, 105711.	10.7	23
398	Future foods: a manifesto for research priorities in structural design of foods. Food and Function, 2020, 11, 1933-1945.	4.6	54
399	Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 857-874.	11.7	238
400	Encapsulation of Iron within $W1/O/W2$ Emulsions Formulated Using a Natural Hydrophilic Surfactant (Saponin): Impact of Surfactant Level and Oil Phase Crystallization. Food Biophysics, 2020, 15, 346-354.	3.0	13
401	Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. International Journal of Biological Macromolecules, 2020, 152, 117-125.	7.5	43
402	Recent advances in the production and application of nano-enabled bioactive food ingredients. Current Opinion in Food Science, 2020, 33, 85-90.	8.0	25
403	Utilization of insect proteins to formulate nutraceutical delivery systems: Encapsulation and release of curcumin using mealworm protein-chitosan nano-complexes. International Journal of Biological Macromolecules, 2020, 151, 333-343.	7. 5	49
404	Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 2020, 317, 126328.	8.2	67
405	Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocolloids, 2020, 105, 105761.	10.7	71
406	Influence of Rosemary Extract Addition in Different Phases on the Oxidation of Lutein and WPI in WPI-Stabilized Lutein Emulsions. Journal of Food Quality, 2020, 2020, 1-10.	2.6	3
407	Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Food Chemistry, 2020, 318, 126484.	8.2	33
408	Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. Journal of Microencapsulation, 2020, 37, 220-229.	2.8	20
409	Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation. International Journal of Molecular Sciences, 2020, 21, 537.	4.1	25
410	Fabrication and characterization of oil-in-water emulsions stabilized by macadamia protein isolate/chitosan hydrochloride composite polymers. Food Hydrocolloids, 2020, 103, 105655.	10.7	45
411	Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology, 2020, 29, 149-168.	2.6	131
412	Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chemistry, 2020, 317, 126229.	8.2	42
413	Application of flow cytometry as novel technology in studying lipid oxidation and mass transport phenomena in oil-in-water emulsions. Food Chemistry, 2020, 315, 126225.	8.2	25
414	Pasting, rheology, and fine structure of starch for waxy rice powder with high-temperature baking. International Journal of Biological Macromolecules, 2020, 146, 620-626.	7. 5	33

#	Article	lF	CITATIONS
415	Identification and characterization of antioxidant and immune-stimulatory polysaccharides in flaxseed hull. Food Chemistry, 2020, 315, 126266.	8.2	43
416	Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends in Food Science and Technology, 2020, 100, 223-234.	15.1	68
417	Impact of fat crystallization on the resistance of $W/O/W$ emulsions to osmotic stress: Potential for temperature-triggered release. Food Research International, 2020, 134, 109273.	6.2	15
418	Enhancement of chemical stability of curcumin-enriched oil-in-water emulsions: Impact of antioxidant type and concentration. Food Chemistry, 2020, 320, 126653.	8.2	28
419	Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chemistry, 2020, 322, 126782.	8.2	140
420	Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids, 2020, 106, 105878.	10.7	70
421	Opportunities to improve oral nutritional supplements for managing malnutrition in cancer patients: A food design approach. Trends in Food Science and Technology, 2020, 102, 254-260.	15.1	12
422	Green fabrication and characterization of debranched starch nanoparticles via ultrasonication combined with recrystallization. Ultrasonics Sonochemistry, 2020, 66, 105074.	8.2	27
423	Oligomeric Procyanidin Nanoliposomes Prevent Melanogenesis and UV Radiation-Induced Skin Epithelial Cell (HFF-1) Damage. Molecules, 2020, 25, 1458.	3.8	11
424	Impact of Pesticide Type and Emulsion Fat Content on the Bioaccessibility of Pesticides in Natural Products. Molecules, 2020, 25, 1466.	3.8	7
425	<scp> </scp> -Arginine/ <scp> </scp> -lysine functionalized chitosan–casein core–shell and pH-responsive nanoparticles: fabrication, characterization and bioavailability enhancement of hydrophobic and hydrophilic bioactive compounds. Food and Function, 2020, 11, 4638-4647.	4.6	28
426	Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 2020, 107, 105963.	10.7	91
427	One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. Journal of Agricultural and Food Chemistry, 2020, 68, 5412-5425.	5.2	42
428	Accelerated aging of rice by controlled microwave treatment. Food Chemistry, 2020, 323, 126853.	8.2	26
429	Resveratrol-loaded biopolymer core–shell nanoparticles: bioavailability and anti-inflammatory effects. Food and Function, 2020, 11, 4014-4025.	4.6	37
430	Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. Food and Bioprocess Technology, 2020, 13, 860-870.	4.7	48
431	Effect of cavitation jet processing on the physicochemical properties and structural characteristics of okara dietary fiber. Food Research International, 2020, 134, 109251.	6.2	52
432	Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods, 2020, 9, 421.	4.3	102

#	Article	IF	CITATIONS
433	Application of Enoki Mushroom (Flammulina Velutipes) Stem Wastes as Functional Ingredients in Goat Meat Nuggets. Foods, 2020, 9, 432.	4.3	50
434	Impact of mushroom (Pleurotus eryngii) flour upon quality attributes of wheat dough and functional cookiesâ€baked products. Food Science and Nutrition, 2020, 8, 361-370.	3.4	17
435	Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate. Food Chemistry, 2020, 327, 127039.	8.2	30
436	Ultrasound-assisted self-assembly of \hat{l}^2 -cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocolloids, 2020, 108, 106021.	10.7	13
437	Stabilization of soybean oil-in-water emulsions using polypeptide multilayers: Cationic polylysine and anionic polyglutamic acid. Food Research International, 2020, 137, 109304.	6.2	11
438	Fermentation of tomato juice improves in vitro bioaccessibility of lycopene. Journal of Functional Foods, 2020, 71, 104020.	3.4	17
439	Hydrothermal stability of phenolic extracts of brown rice. Food Chemistry, 2019, 271, 114-121.	8.2	34
440	Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocolloids, 2019, 87, 20-28.	10.7	78
441	Impact of whey protein complexation with phytic acid on its emulsification and stabilization properties. Food Hydrocolloids, 2019, 87, 90-96.	10.7	35
442	Improvement of carotenoid bioaccessibility from spinach by co-ingesting with excipient nanoemulsions: impact of the oil phase composition. Food and Function, 2019, 10, 5302-5311.	4.6	40
443	Encapsulation of Lutein in Nanoemulsions Stabilized by Resveratrol and Maillard Conjugates. Journal of Food Science, 2019, 84, 2421-2431.	3.1	23
444	Loading natural emulsions with nutraceuticals using the pH-driven method: formation & tability of curcumin-loaded soybean oil bodies. Food and Function, 2019, 10, 5473-5484.	4.6	33
445	Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1514-1532.	11.7	123
446	A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in \hat{l}^2 -carotene stability and bioaccessibility. Food and Function, 2019, 10, 5446-5460.	4.6	84
447	Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chemistry, 2019, 301, 125207.	8.2	65
448	Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study. Food Hydrocolloids, 2019, 97, 105234.	10.7	79
449	Impact of proteins and polysaccharides on flavor release from oil-in-water emulsions during simulated cooking. Food Research International, 2019, 125, 108549.	6.2	9
450	A simulated gastrointestinal tract study of texturized rice grains: Impact of texturization on starch digestibility. Journal of Cereal Science, 2019, 89, 102800.	3.7	13

#	Article	IF	CITATIONS
451	Impact of frying conditions on hierarchical structures and oil absorption of normal maize starch. Food Hydrocolloids, 2019, 97, 105231.	10.7	52
452	Development of vitamin Eâ€enriched functional foods: stability of tocotrienols in food systems. International Journal of Food Science and Technology, 2019, 54, 3196-3204.	2.7	14
453	Fabrication and characterization of nanostructured lipid carriers (NLC) using a plant-based emulsifier: Quillaja saponin. Food Research International, 2019, 126, 108601.	6.2	46
454	Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocolloids, 2019, 97, 105197.	10.7	82
455	Impact of curcumin delivery system format on bioaccessibility: nanocrystals, nanoemulsion droplets, and natural oil bodies. Food and Function, 2019, 10, 4339-4349.	4.6	58
456	Fabrication of Curcumin-Loaded Dairy Milks Using the pH-Shift Method: Formation, Stability, and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2019, 67, 12245-12254.	5.2	27
457	<i>N</i> -Acetyl- <scp> </scp> -cysteine/ <scp> </scp> -Cysteine-Functionalized Chitosanâ ⁻ β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 12511-12519.	5.2	13
458	Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. Journal of Agricultural and Food Chemistry, 2019, 67, 13228-13236.	5.2	84
459	Effects of Chelating Agents and Salts on Interfacial Properties and Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2019, 67, 13718-13727.	5. 2	21
460	Encapsulation of Vitamin D ₃ in Pickering Emulsion Stabilized by Nanofibrillated Mangosteen Cellulose: Effect of Environmental Stresses. Journal of Food Science, 2019, 84, 3213-3221.	3.1	34
461	Plantâ€based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 2047-2067.	11.7	196
462	Characterization of polymethoxyflavone demethylation during drying processes of citrus peels. Food and Function, 2019, 10, 5707-5717.	4.6	24
463	Food Chemistry as a Vital Science: Past, Present, Future. ACS Symposium Series, 2019, , 231-238.	0.5	1
464	Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110460.	5.0	75
465	Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors. Journal of Agricultural and Food Chemistry, 2019, 67, 10937-10946.	5.2	142
466	Coreâ€"Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. ACS Applied Materials & Description (1988) 11, 38103-38115.	8.0	92
467	Fabrication of surface-active antioxidant biopolymers by using a grafted scallop (<i>Patinopecten) Tj ETQq1 1 0.2 stability of tuna oil-loaded emulsions. Food and Function, 2019, 10, 6752-6766.</i>	784314 rg 4.6	BT /Overlock 20
468	Impact of ripening inhibitors on molecular transport of antimicrobial components from essential oil nanoemulsions. Journal of Colloid and Interface Science, 2019, 556, 568-576.	9.4	31

#	Article	IF	Citations
469	A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science and Technology, 2019, 92, 138-151.	15.1	66
470	Hybrid Bionanoparticle-Stabilized Pickering Emulsions for Quercetin Delivery: Effect of Interfacial Composition on Release, Lipolysis, and Bioaccessibility. ACS Applied Nano Materials, 2019, 2, 6462-6472.	5.0	33
471	Recent advances in colloidal delivery systems for nutraceuticals: A case study – Delivery by Design of curcumin. Journal of Colloid and Interface Science, 2019, 557, 506-518.	9.4	125
472	Vitamin E Encapsulation within Oil-in-Water Emulsions: Impact of Emulsifier Type on Physicochemical Stability and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2019, 67, 1521-1529.	5. 2	71
473	Bioaccessibility and cellular uptake of \hat{l}^2 -carotene in emulsion-based delivery systems using scallop (<i>Patinopecten yessoensis</i>) gonad protein isolates: effects of carrier oil. Food and Function, 2019, 10, 49-60.	4.6	31
474	Fabrication and characterization of functional protein–polysaccharide–polyphenol complexes assembled from lactoferrin, hyaluronic acid and (â^')-epigallocatechin gallate. Food and Function, 2019, 10, 1098-1108.	4.6	27
475	Molecular exchange processes in mixed oil-in-water nanoemulsions: Impact on droplet size and composition. Journal of Food Engineering, 2019, 250, 1-8.	5.2	5
476	Synthesis and characterization of citric acid esterified rice starch by reactive extrusion: A new method of producing resistant starch. Food Hydrocolloids, 2019, 92, 135-142.	10.7	109
477	Encapsulation of Bifidobacterium pseudocatenulatum G7 in gastroprotective microgels: Improvement of the bacterial viability under simulated gastrointestinal conditions. Food Hydrocolloids, 2019, 91, 283-289.	10.7	57
478	Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: Sustained release of garlic flavor during simulated cooking. Food Research International, 2019, 119, 6-14.	6.2	50
479	Establishing the impact of food matrix effects on the bioaccessibility of nutraceuticals and pesticides using a standardized food model. Food and Function, 2019, 10, 1375-1385.	4.6	17
480	Dietary Intake of <i>Pleurotus eryngii</i> Ameliorated Dextranâ€Sodiumâ€Sulfateâ€Induced Colitis in Mice. Molecular Nutrition and Food Research, 2019, 63, e1801265.	3.3	54
481	Segregation Behavior of Polysaccharide–Polysaccharide Mixtures—A Feasibility Study. Gels, 2019, 5, 26.	4.5	4
482	Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science, 2019, 553, 549-556.	9.4	41
483	Ameliorative effects of snake (Deinagkistrodon acutus) oil and its main fatty acids against UVB-induced skin photodamage in mice. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111538.	3.8	9
484	Identification of a new benzophenone from <i>Psidium guajava</i> L. leaves and its antineoplastic effects on human colon cancer cells. Food and Function, 2019, 10, 4189-4198.	4.6	21
485	Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Journal of Agricultural and Food Chemistry, 2019, 67, 7506-7511.	5.2	69
486	Effect of <i>In Vitro</i> Digestion on Phytochemical Profiles and Cellular Antioxidant Activity of Whole Grains. Journal of Agricultural and Food Chemistry, 2019, 67, 7016-7024.	5.2	46

#	Article	IF	CITATIONS
487	Impact of sodium caseinate, soy lecithin and carrageenan on functionality of oil-in-water emulsions. Food Research International, 2019, 123, 779-789.	6.2	24
488	Antioxidant activity and \hat{l} ±-amylase and \hat{l} ±-glucosidase inhibitory activity of a fermented tannic acid product: Trigalloylglucose. LWT - Food Science and Technology, 2019, 112, 108249.	5.2	13
489	Effects of l-arginine and l-histidine on heat-induced aggregation of fish myosin: Bighead carp (Aristichthys nobilis). Food Chemistry, 2019, 295, 320-326.	8.2	48
490	Site specific PEGylation of \hat{l}^2 -lactoglobulin at glutamine residues and its influence on conformation and antigenicity. Food Research International, 2019, 123, 623-630.	6.2	10
491	Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core–Multilayer-Shell Structure: Fabrication, Stability, and Foamability. Journal of Agricultural and Food Chemistry, 2019, 67, 6574-6584.	5 . 2	58
492	Development of Self-Healing Double-Network Hydrogels: Enhancement of the Strength of Wheat Gluten Hydrogels by <i>In Situ</i> Metal–Catechol Coordination. Journal of Agricultural and Food Chemistry, 2019, 67, 6508-6516.	5.2	22
493	Phenolics, Antioxidant Activity, and In Vitro Starch Digestibility of Extruded Brown Rice Influenced by <i>Choerospondias axillaris</i> Fruit Peels Addition. Starch/Staerke, 2019, 71, 1800346.	2.1	11
494	Food Nanotechnology: Harnessing the Power of the Miniature World Inside Our Foods. , 2019, , 287-321.		2
495	Nutraceuticals: Superfoods or Superfads?. , 2019, , 167-201.		3
496	Personalized Nutrition: Customizing Your Diet for Better Health., 2019, , 233-260.		2
497	Impact of plant extract on the gastrointestinal fate of nutraceutical-loaded nanoemulsions: phytic acid inhibits lipid digestion but enhances curcumin bioaccessibility. Food and Function, 2019, 10, 3344-3355.	4.6	15
498	Influence of Disperse Phase Transfer on Properties of Nanoemulsions Containing Oil Droplets with Different Compositions and Physical States. Food Biophysics, 2019, 14, 355-364.	3.0	6
499	pH and lipid unsaturation impact the formation of acrylamide and 5-hydroxymethylfurfural in model system at frying temperature. Food Research International, 2019, 123, 403-413.	6.2	26
500	Impact of Food Emulsions on the Bioaccessibility of Hydrophobic Pesticide Residues in Co-Ingested Natural Products: Influence of Emulsifier and Dietary Fiber Type. Journal of Agricultural and Food Chemistry, 2019, 67, 6032-6040.	5.2	18
501	Effect of fatty acids and triglycerides on the formation of lysine-derived advanced glycation end-products in model systems exposed to frying temperature. RSC Advances, 2019, 9, 15162-15170.	3. 6	24
502	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 2019, 96, 709-716.	10.7	89
503	Design of Astaxanthin-Loaded Core–Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(lactic- <i>co</i> -glycolic acid): Enhancement of Water Solubility, Stability, and Bioavailability. Journal of Agricultural and Food Chemistry, 2019, 67, 5113-5121.	5.2	72
504	Modulation of caseinate-stabilized model oil-in-water emulsions with soy lecithin. Food Research International, 2019, 122, 361-370.	6.2	14

#	Article	IF	CITATIONS
505	Comparison of structural and physicochemical properties of lysozyme/carboxymethylcellulose complexes and microgels. Food Research International, 2019, 122, 273-282.	6.2	8
506	Are You What You Eat?. , 2019, , 123-165.		O
507	Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and \hat{l}^2 -glucan. Food Research International, 2019, 123, 266-275.	6.2	40
508	Role of Mucin in Behavior of Food-Grade TiO ₂ Nanoparticles under Simulated Oral Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 5882-5890.	5.2	32
509	In situ monitoring of lipid droplet release from biopolymer microgels under simulated gastric conditions using magnetic resonance imaging and spectroscopy. Food Research International, 2019, 123, 181-188.	6.2	12
510	Future Foods., 2019,,.		45
511	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 2019, 96, 699-708.	10.7	190
512	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	12.0	1,873
513	Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids, 2019, 93, 342-350.	10.7	126
514	Pasting and Rheological Properties of Nonâ€Crystalline Granular Starch. Starch/Staerke, 2019, 71, 1800338.	2.1	3
515	Effect of dietary fibers on the structure and digestibility of fried potato starch: A comparison of pullulan and pectin. Carbohydrate Polymers, 2019, 215, 47-57.	10.2	81
516	Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT - Food Science and Technology, 2019, 110, 190-196.	5.2	53
517	Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. Journal of Food Engineering, 2019, 254, 1-9.	5.2	57
518	Structural characterization and rheological properties of a pectin with anti-constipation activity from the roots of Arctium lappa L. Carbohydrate Polymers, 2019, 215, 119-129.	10.2	35
519	Gold nanoparticles bioreduced by natural extracts of arantho (<i>Kalanchoe daigremontiana</i>) for biological purposes: physicochemical, antioxidant and antiproliferative evaluations. Materials Research Express, 2019, 6, 055010.	1.6	12
520	Impact of granule size on microstructural changes and oil absorption of potato starch during frying. Food Hydrocolloids, 2019, 94, 428-438.	10.7	51
521	Encapsulation and release of egg white protein in alginate microgels: Impact of pH and thermal treatment. Food Research International, 2019, 120, 305-311.	6.2	26
522	Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chemistry, 2019, 289, 340-350.	8.2	34

#	Article	IF	CITATIONS
523	Fabrication of plant-based vitamin D ₃ -fortified nanoemulsions: influence of carrier oil type on vitamin bioaccessibility. Food and Function, 2019, 10, 1826-1835.	4.6	61
524	Titanium Dioxide Nanoparticles Do Not Adversely Impact Carotenoid Bioaccessibility from Tomatoes Consumed with Different Nanoemulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2019, 67, 4931-4939.	5.2	7
525	Modulation of stability, rheological properties, and microstructure of heteroaggregated emulsion: Influence of oil content. LWT - Food Science and Technology, 2019, 109, 457-466.	5.2	22
526	Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16922-16933.	8.0	138
527	Effects of Degree of Polymerization on Size, Crystal Structure, and Digestibility of Debranched Starch Nanoparticles and Their Enhanced Antioxidant and Antibacterial Activities of Curcumin. ACS Sustainable Chemistry and Engineering, 2019, 7, 8499-8511.	6.7	50
528	Investigation on the binding interaction between rice glutelin and epigallocatechin-3-gallate using spectroscopic and molecular docking simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 215-222.	3.9	16
529	Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content. Food Chemistry, 2019, 291, 22-29.	8.2	92
530	Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocolloids, 2019, 93, 325-334.	10.7	46
531	Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules, 2019, 130, 315-322.	7.5	69
532	Nanoemulsion-based delivery systems for testing nutraceutical efficacy using Caenorhabditis elegans: Demonstration of curcumin bioaccumulation and body-fat reduction. Food Research International, 2019, 120, 157-166.	6.2	23
533	Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydrate Polymers, 2019, 213, 192-198.	10.2	38
534	Impact of amylose content on structural changes and oil absorption of fried maize starches. Food Chemistry, 2019, 287, 28-37.	8.2	34
535	Microemulsions as nanoreactors for synthesis of biopolymer nanoparticles. Trends in Food Science and Technology, 2019, 86, 118-130.	15.1	49
536	Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocolloids, 2019, 93, 24-33.	10.7	13
537	Rheological and microstructural properties of cold-set emulsion gels fabricated from mixed proteins: Whey protein and lactoferrin. Food Research International, 2019, 119, 315-324.	6.2	30
538	Encapsulation of resveratrol in zein/pectin core-shell nanoparticles: Stability, bioaccessibility, and antioxidant capacity after simulated gastrointestinal digestion. Food Hydrocolloids, 2019, 93, 261-269.	10.7	159
539	Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture. Journal of Agricultural and Food Chemistry, 2019, 67, 2991-2998.	5.2	21
540	Protein–polyphenol interactions enhance the antioxidant capacity of phenolics: analysis of rice glutelin–procyanidin dimer interactions. Food and Function, 2019, 10, 765-774.	4.6	163

#	Article	lF	CITATIONS
541	Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions. Food Research International, 2019, 120, 264-274.	6.2	54
542	Cereal proteins in nanotechnology: formulation of encapsulation and delivery systems. Current Opinion in Food Science, 2019, 25, 28-34.	8.0	29
543	Non-extractable polyphenols from cranberries: potential anti-inflammation and anti-colon-cancer agents. Food and Function, 2019, 10, 7714-7723.	4.6	31
544	Inhibitory effects of nobiletin and its major metabolites on lung tumorigenesis. Food and Function, 2019, 10, 7444-7452.	4.6	31
545	Bioaccessibility and stability of \hat{l}^2 -carotene encapsulated in plant-based emulsions: impact of emulsifier type and tannic acid. Food and Function, 2019, 10, 7239-7252.	4.6	27
546	Interaction of a bile salt (sodium taurocholate) with cationic (îµ-polylysine) and anionic (pectin) biopolymers under simulated gastrointestinal conditions. Food Hydrocolloids, 2019, 87, 352-359.	10.7	18
547	Preparation, characterization and physicochemical properties of novel lowâ€phosphorus egg yolk protein. Journal of the Science of Food and Agriculture, 2019, 99, 1740-1747.	3.5	7
548	Effect of dynamic high pressure microfluidization on structure and stability of pluronic F127 modified liposomes. Journal of Dispersion Science and Technology, 2019, 40, 982-989.	2.4	13
549	Changes in Granular Swelling and Rheological Properties of Food Crop Starches Modified by Superheated Steam. Starch/Staerke, 2019, 71, 1800132.	2.1	11
550	Inhibition of \hat{l} ±-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocolloids, 2019, 90, 341-352.	10.7	32
551	Development of Oral Delivery Systems with Enhanced Antioxidant and Anticancer Activity: Coix Seed Oil and β-Carotene Coloaded Liposomes. Journal of Agricultural and Food Chemistry, 2019, 67, 406-414.	5.2	52
552	Emulsion-based control of flavor release profiles: Impact of oil droplet characteristics on garlic aroma release during simulated cooking. Food Research International, 2019, 116, 1-11.	6.2	32
553	Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects. NanoImpact, 2019, 13, 37-43.	4.5	53
554	Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocolloids, 2019, 89, 396-405.	10.7	59
555	Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annual Review of Food Science and Technology, 2019, 10, 597-617.	9.9	112
556	Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annual Review of Food Science and Technology, 2019, 10, 365-387.	9.9	172
557	Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile. Food Chemistry, 2019, 283, 141-147.	8.2	40
558	Encapsulation of \hat{l}^2 -carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 2019, 89, 80-89.	10.7	182

#	Article	IF	Citations
559	Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. Journal of Colloid and Interface Science, 2019, 536, 80-87.	9.4	163
560	Controllable Viscoelastic Properties of Whey Protein-Based Emulsion Gels by Combined Cross-Linking with Calcium Ions and Cinnamaldehyde. ACS Applied Bio Materials, 2019, 2, 311-320.	4.6	16
561	Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 391-398.	5.2	46
562	The gastrointestinal behavior of emulsifiers used to formulate excipient emulsions impact the bioavailability of \hat{l}^2 -carotene from spinach. Food Chemistry, 2019, 278, 811-819.	8.2	47
563	Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control, 2019, 98, 405-411.	5.5	46
564	Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NanoImpact, 2019, 13, 13-25.	4.5	77
565	Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International, 2019, 120, 748-755.	6.2	42
566	Comprehensive investigation and comparison of surface microstructure of fractionated potato starches. Food Hydrocolloids, 2019, 89, 11-19.	10.7	62
567	Stability, rheology, and \hat{l}^2 -carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocolloids, 2019, 88, 210-217.	10.7	198
568	A simple and green method for preparation of non-crystalline granular starch through controlled gelatinization. Food Chemistry, 2019, 274, 268-273.	8.2	26
569	Development of stable high internal phase emulsions by pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers. Food Chemistry, 2019, 275, 246-254.	8.2	136
570	Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science, 2018, 253, 1-22.	14.7	287
571	Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: Impact of bead dimensions, pore size, and alginate/pectin ratio. Food Research International, 2018, 106, 745-751.	6.2	16
572	New Trends in the Microencapsulation of Functional Fatty Acidâ€Rich Oils Using Transglutaminase Catalyzed Crosslinking. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 274-289.	11.7	44
573	Fabrication and characterization of \hat{l}^2 -cypermethrin-loaded PLA microcapsules prepared by emulsion-solvent evaporation: loading and release properties. Environmental Science and Pollution Research, 2018, 25, 13525-13535.	5.3	41
574	Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food and Function, 2018, 9, 1829-1839.	4.6	144
575	Characterization of physical properties and electronic sensory analyses of citrus oil-based nanoemulsions. Food Research International, 2018, 109, 149-158.	6.2	43
576	Green Synthesis of Cyclodextrin-Based Metal–Organic Frameworks through the Seed-Mediated Method for the Encapsulation of Hydrophobic Molecules. Journal of Agricultural and Food Chemistry, 2018, 66, 4244-4250.	5.2	46

#	Article	IF	CITATIONS
577	Impact of Phospholipids and Tocopherols on the Oxidative Stability of Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 3939-3948.	5.2	44
578	Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers. Journal of Agricultural and Food Chemistry, 2018, 66, 4458-4468.	5.2	64
579	Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocolloids, 2018, 82, 442-450.	10.7	52
580	Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids, 2018, 79, 450-461.	10.7	150
581	Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin. International Journal of Biological Macromolecules, 2018, 112, 626-637.	7.5	30
582	Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 2018, 106, 853-861.	6.2	217
583	Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Journal of Agricultural and Food Chemistry, 2018, 66, 1488-1497.	5.2	161
584	<i>In Vitro</i> Bioavailability, Cellular Antioxidant Activity, and Cytotoxicity of β-Carotene-Loaded Emulsions Stabilized by Catechin–Egg White Protein Conjugates. Journal of Agricultural and Food Chemistry, 2018, 66, 1649-1657.	5.2	41
585	Simultaneous characterization of chemical structures and bioactivities of citrus-derived components using SERS barcodes. Food Chemistry, 2018, 240, 743-750.	8.2	10
586	Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules, 2018, 113, 427-433.	7.5	71
587	Properties of Starch after Extrusion: A Review. Starch/Staerke, 2018, 70, 1700110.	2.1	104
588	Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocolloids, 2018, 79, 262-272.	10.7	105
589	The Efficacy of Nanoemulsionâ€Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies. Molecular Nutrition and Food Research, 2018, 62, 1700836.	3.3	59
590	Iron Encapsulation in Waterâ€inâ€Oil Emulsions: Effect of Ferrous Sulfate Concentration and Fat Crystal Formation on Oxidative Stability. Journal of Food Science, 2018, 83, 309-317.	3.1	27
591	Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Research International, 2018, 106, 404-409.	6.2	201
592	Effects of conjugated linoleic acid (CLA) on fat accumulation, activity, and proteomics analysis in Caenorhabditis elegans. Food Chemistry, 2018, 249, 193-201.	8.2	30
593	Comparing the binding interaction between \hat{l}^2 -lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 197-206.	3.9	97
594	Development of Functional or Medical Foods for Oral Administration of Insulin for Diabetes Treatment: Gastroprotective Edible Microgels. Journal of Agricultural and Food Chemistry, 2018, 66, 4820-4826.	5.2	23

#	Article	IF	CITATIONS
595	Coencapsulation of (â^')-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 3691-3699.	5.2	188
596	Efficacy of potato resistant starch prepared by microwave–toughening treatment. Carbohydrate Polymers, 2018, 192, 299-307.	10.2	35
597	Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions. Journal of Agricultural and Food Chemistry, 2018, 66, 3930-3938.	5. 2	36
598	The biophysics of digestion: lipids. Current Opinion in Food Science, 2018, 21, 1-6.	8.0	40
599	Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 2018, 114, 1134-1143.	7. 5	36
600	Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Research International, 2018, 108, 246-253.	6.2	121
601	Characterisations of oil-in-water Pickering emulsion stabilized hydrophobic phytoglycogen nanoparticles. Food Hydrocolloids, 2018, 76, 78-87.	10.7	72
602	Extending viability of <i>Lactobacillus plantarum</i> and <i>Lactobacillus johnsonii</i> by microencapsulation in alginate microgels. International Journal of Food Sciences and Nutrition, 2018, 69, 155-164.	2.8	13
603	Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chemistry, 2018, 245, 104-111.	8.2	86
604	Phenolic retention of brown rice after extrusion with mesophilic \hat{l}_{\pm} -amylase. Food Bioscience, 2018, 21, 8-13.	4.4	27
605	Extending protein functionality: Microfluidization of heat denatured whey protein fibrils. Journal of Food Engineering, 2018, 223, 189-196.	5.2	42
606	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 108-126.	4.7	66
607	Effect of frying on the pasting and rheological properties of normal maize starch. Food Hydrocolloids, 2018, 77, 85-95.	10.7	101
608	A metabolite of nobiletin, 4′-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food and Function, 2018, 9, 87-95.	4.6	48
609	Lutein-enriched emulsion-based delivery systems: Influence of emulsifiers and antioxidants on physical and chemical stability. Food Chemistry, 2018, 242, 395-403.	8.2	96
610	Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD. Food Chemistry, 2018, 242, 131-138.	8.2	112
611	pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocolloids, 2018, 77, 870-878.	10.7	104
612	Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2018, 66, 20-35.	5.2	198

#	Article	IF	CITATIONS
613	Impact of oil droplet concentration on the optical, rheological, and stability characteristics of O/W emulsions stabilized with plant-based surfactant: Potential application as non-dairy creamers. Food Research International, 2018, 105, 913-919.	6.2	26
614	Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin. Food Hydrocolloids, 2018, 77, 911-920.	10.7	59
615	Enhancement of physicochemical properties of whey protein-stabilized nanoemulsions by interfacial cross-linking using cinnamaldehyde. Food Hydrocolloids, 2018, 77, 976-985.	10.7	56
616	Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. Journal of Colloid and Interface Science, 2018, 514, 208-216.	9.4	110
617	Encapsulation of \hat{I}^2 -carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, 2018, 40, 527-535.	3.4	111
618	Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. Journal of Dispersion Science and Technology, 2018, 39, 826-835.	2.4	67
619	Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science, 2018, 251, 55-79.	14.7	631
620	Enhanced delivery of lipophilic bioactives using emulsions: a review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food and Function, 2018, 9, 22-41.	4.6	186
621	Delivery by Design (DbD): A Standardized Approach to the Development of Efficacious Nanoparticleâ€and Microparticleâ€Based Delivery Systems. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 200-219.	11.7	85
622	Bioextrusion of Broken Rice in the Presence of Divalent Metal Salts: Effects on Starch Microstructure and Phenolics Compounds. ACS Sustainable Chemistry and Engineering, 2018, 6, 1162-1171.	6.7	19
623	Effect of oxidative modification on structural and foaming properties of egg white protein. Food Hydrocolloids, 2018, 75, 223-228.	10.7	150
624	Combining Headspace Solid-Phase Microextraction and Surface-Enhanced Raman Spectroscopy To Detect the Pesticide Fonofos in Apple Juice. Journal of Food Protection, 2018, 81, 1087-1092.	1.7	19
625	Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. Npj Science of Food, 2018, 2, 22.	5.5	37
626	Citrus Oil Emulsions Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 12978-12988.	5.2	34
627	Formation and Characterization of Lactoferrin-Hyaluronic Acid Conjugates and Their Effects on the Storage Stability of Sesamol Emulsions. Molecules, 2018, 23, 3291.	3.8	12
628	Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 10532-10542.	5.2	53
629	Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. Journal of Agricultural and Food Chemistry, 2018, 66, 10816-10826.	5.2	113
630	Encapsulation systems for lutein: A review. Trends in Food Science and Technology, 2018, 82, 71-81.	15.1	110

#	Article	lF	CITATIONS
631	Design, Fabrication, Characterization, and In Vitro Digestion of Alkaloid-, Catechin-, and Cocoa Extract-Loaded Liposomes. Journal of Agricultural and Food Chemistry, 2018, 66, 12051-12065.	5.2	30
632	Fabrication and Characterization of Curcumin-Loaded Liposomes Formed from Sunflower Lecithin: Impact of Composition and Environmental Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 12421-12430.	5.2	65
633	Nanoemulsion-Based Delivery Systems for Nutraceuticals: Influence of Long-Chain Triglyceride (LCT) Type on In Vitro Digestion and Astaxanthin Bioaccessibility. Food Biophysics, 2018, 13, 412-421.	3.0	51
634	Synergism between luteolin and sulforaphane in anti-inflammation. Food and Function, 2018, 9, 5115-5123.	4.6	33
635	Influence of Dairy Emulsifier Type and Lipid Droplet Size on Gastrointestinal Fate of Model Emulsions: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2018, 66, 9761-9769.	5.2	55
636	Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. Journal of Agricultural and Food Chemistry, 2018, 66, 9785-9793.	5. 2	58
637	Proteinâ€Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 920-936.	11.7	178
638	Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environmental Science and Pollution Research, 2018, 25, 21742-21751.	5. 3	52
639	Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Research International, 2018, 111, 178-186.	6.2	81
640	Influence of oat components on lipid digestion using an in vitro model: Impact of viscosity and depletion flocculation mechanism. Food Hydrocolloids, 2018, 83, 253-264.	10.7	46
641	Anti-inflammatory effect of xanthomicrol, a major colonic metabolite of 5-demethyltangeretin. Food and Function, 2018, 9, 3104-3113.	4.6	18
642	Impact of Electrostatic Interactions on Lecithin-Stabilized Model O/W Emulsions. Food Biophysics, 2018, 13, 292-303.	3.0	8
643	Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocolloids, 2018, 83, 246-252.	10.7	96
644	Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocolloids, 2018, 85, 75-85.	10.7	152
645	Modification of potato starch by using superheated steam. Carbohydrate Polymers, 2018, 198, 375-384.	10.2	74
646	Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science and Technology, 2018, 79, 67-77.	15.1	74
647	Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. Environmental Science & Environmental Science	10.0	41
648	Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism. Food Chemistry, 2018, 268, 324-333.	8.2	85

#	Article	IF	CITATIONS
649	Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: impact of lipid type on carotenoid solubilization from spinach. Food and Function, 2018, 9, 4352-4365.	4.6	56
650	Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium) Tj ETQq0 0 0	O rgBT /Ov	erlock 10 Tf 5
651	The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydrate Polymers, 2018, 200, 436-445.	10.2	49
652	Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 2018, 114, 30-37.	6.2	96
653	Recent developments in encapsulation and release of functional food ingredients: delivery by design. Current Opinion in Food Science, 2018, 23, 80-84.	8.0	68
654	Comparison of phytochemical profiles and antiproliferative activities of different proanthocyanidins fractions from Choerospondias axillaris fruit peels. Food Research International, 2018, 113, 298-308.	6.2	21
655	Composite zein - propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 2018, 85, 281-290.	10.7	112
656	The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chemistry, 2018, 269, 577-587.	8.2	38
657	Modulation of physical properties of microfluidized whey protein fibrils with chitosan. Food Research International, 2018, 113, 149-155.	6.2	16
658	Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on inÂvitro digestion and bioaccessibility. Food Hydrocolloids, 2018, 83, 153-164.	10.7	176
659	General Aspects of Nanoemulsions and Their Formulation. , 2018, , 3-20.		52
660	Overview of Nanoemulsion Properties: Stability, Rheology, and Appearance., 2018,, 21-49.		21
661	Application of Nanoemulsions in Formulation of Pesticides. , 2018, , 379-413.		30
662	Characterization of Physicochemical Properties of Nanoemulsions: Appearance, Stability, and Rheology., 2018,, 547-576.		9
663	Characterization of Gastrointestinal Fate of Nanoemulsions. , 2018, , 577-612.		11
664	Safety of Nanoemulsions and Their Regulatory Status. , 2018, , 613-628.		13
665	Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 9087-9096.	5.2	44
666	Impact of Titanium Dioxide on the Bioaccessibility of \hat{l}^2 -Carotene in Emulsions with Different Particle Sizes. Journal of Agricultural and Food Chemistry, 2018, 66, 9318-9325.	5.2	14

#	Article	IF	CITATIONS
667	Stabilizing Oil-in-Water Emulsion with Amorphous and Granular Octenyl Succinic Anhydride Modified Starches. Journal of Agricultural and Food Chemistry, 2018, 66, 9301-9308.	5.2	48
668	Modification of the digestibility of extruded rice starch by enzyme treatment (\hat{l}^2 -amylolysis): An in vitro study. Food Research International, 2018, 111, 590-596.	6.2	31
669	Reducing Intestinal Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of Triglyceride Hydrolysis by Nanocellulose. ACS Nano, 2018, 12, 6469-6479.	14.6	148
670	Targeted delivery of pixantrone to neutrophils by poly(sialic acid)-p-octadecylamine conjugate modified liposomes with improved antitumor activity. International Journal of Pharmaceutics, 2018, 547, 315-329.	5.2	27
671	Controlling lipid digestion profiles using mixtures of different types of microgel: Alginate beads and carrageenan beads. Journal of Food Engineering, 2018, 238, 156-163.	5.2	36
672	Emulsions as delivery systems for gamma and delta tocotrienols: Formation, properties and simulated gastrointestinal fate. Food Research International, 2018, 105, 570-579.	6.2	23
673	Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocolloids, 2017, 68, 238-245.	10.7	160
674	Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annual Review of Food Science and Technology, 2017, 8, 439-466.	9.9	207
675	Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 2017, 8, 205-236.	9.9	363
676	Influence of rice bran stearin on stability, properties and encapsulation efficiency of polyglycerol polyricinoleate (PGPR)-stabilized water-in-rice bran oil emulsions. Food Research International, 2017, 93, 26-32.	6.2	29
677	Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of \hat{l}^2 -carotene water-dispersibility and chemical stability. Food Hydrocolloids, 2017, 69, 49-55.	10.7	92
678	Use of natural emulsifiers in model coffee creamers: Physical properties of quillaja saponin-stabilized emulsions. Food Hydrocolloids, 2017, 67, 111-119.	10.7	41
679	5-Hydroxy polymethoxyflavones inhibit glycosaminoglycan biosynthesis in lung and colon cancer cells. Journal of Functional Foods, 2017, 30, 39-47.	3.4	8
680	Identification of terpenoids from Rubus corchorifolius L. f. leaves and their anti-proliferative effects on human cancer cells. Food and Function, 2017, 8, 1052-1060.	4.6	17
681	Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression. Journal of Nutritional Biochemistry, 2017, 42, 17-25.	4.2	66
682	Dietary 5-demethylnobiletin inhibits cigarette carcinogen NNK-induced lung tumorigenesis in mice. Food and Function, 2017, 8, 954-963.	4.6	23
683	Enzyme-Based Strategies for Structuring Foods for Improved Functionality. Annual Review of Food Science and Technology, 2017, 8, 21-34.	9.9	47
684	Lactase (\hat{l}^2 -galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity. Food Hydrocolloids, 2017, 67, 85-93.	10.7	49

#	Article	IF	CITATIONS
685	In structure and in - vitro digestibility of waxy corn starch debranched by pullulanase. Food Hydrocolloids, 2017, 67, 104-110.	10.7	63
686	The influence of lipid droplet size on the oral bioavailability of vitamin D ₂ encapsulated in emulsions: an in vitro and in vivo study. Food and Function, 2017, 8, 767-777.	4.6	54
687	Bioactive Peptides Isolated from Casein Phosphopeptides Enhance Calcium and Magnesium Uptake in Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2017, 65, 2307-2314.	5.2	41
688	Influence of Lipid Content in a Corn Oil Preparation on the Bioaccessibility of βâ€Carotene: A Comparison of Lowâ€Fat and Highâ€Fat Samples. Journal of Food Science, 2017, 82, 373-379.	3.1	22
689	Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chemistry, 2017, 229, 152-158.	8.2	87
690	Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents. Food Hydrocolloids, 2017, 69, 229-235.	10.7	26
691	Protection of \hat{l}^2 -carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International, 2017, 96, 84-93.	6.2	83
692	The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal of Food Science and Technology, 2017, 54, 469-480.	2.8	10
693	Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC - Trends in Analytical Chemistry, 2017, 90, 1-13.	11.4	89
694	Influence of pH and cinnamaldehyde on the physical stability and lipolysis of whey protein isolate-stabilized emulsions. Food Hydrocolloids, 2017, 69, 103-110.	10.7	54
695	Novel <i>ent</i> -Kaurane Diterpenoid from <i>Rubus corchorifolius</i> L. f. Inhibits Human Colon Cancer Cell Growth via Inducing Cell Cycle Arrest and Apoptosis. Journal of Agricultural and Food Chemistry, 2017, 65, 1566-1573.	5.2	25
696	Influence of simulated in-mouth processing (size reduction and alpha-amylase addition) on lipid digestion and \hat{l}^2 -carotene bioaccessibility in starch-based filled hydrogels. LWT - Food Science and Technology, 2017, 80, 113-120.	5.2	15
697	Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai. International Journal of Biological Macromolecules, 2017, 99, 454-464.	7. 5	47
698	Alkylated pectin: Molecular characterization, conformational change and gel property. Food Hydrocolloids, 2017, 69, 341-349.	10.7	37
699	The relationship between reducing sugars and phenolic retention of brown rice after enzymatic extrusion. Journal of Cereal Science, 2017, 74, 244-249.	3.7	43
700	Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems. Journal of Agricultural and Food Chemistry, 2017, 65, 1732-1739.	5.2	38
701	Utilisation of spontaneous emulsification to fabricate luteinâ€loaded nanoemulsionâ€based delivery systems: factors influencing particle size and colour. International Journal of Food Science and Technology, 2017, 52, 1408-1416.	2.7	33
702	Impact of laccase on the colour stability of structured oil-in-water emulsions. Food Research International, 2017, 97, 223-230.	6.2	16

#	Article	IF	Citations
703	Safety evaluation and lipid-lowering effects of food-grade biopolymer complexes (Îμ-polylysine-pectin) in mice fed a high-fat diet. Food and Function, 2017, 8, 1822-1829.	4.6	13
704	Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science, 2017, 246, 165-180.	14.7	100
705	Fabrication and characterization of nanoemulsion-coated microgels: Electrostatic deposition of lipid droplets on alginate beads. Food Hydrocolloids, 2017, 71, 149-157.	10.7	19
706	Improvements in the formation and stability of fish oil-in-water nanoemulsions using carrier oils: MCT, thyme oil, & Dournal of Food Engineering, 2017, 211, 60-68.	5.2	79
707	Enhancement of Carotenoid Bioaccessibility from Tomatoes Using Excipient Emulsions: Influence of Particle Size. Food Biophysics, 2017, 12, 172-185.	3.0	32
708	Isolation of a novel bioactive protein from an edible mushroom Pleurotus eryngii and its anti-inflammatory potential. Food and Function, 2017, 8, 2175-2183.	4.6	50
709	Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR. Food Chemistry, 2017, 233, 525-529.	8.2	97
710	Impact of Lipid Phase on the Bioavailability of Vitamin E in Emulsion-Based Delivery Systems: Relative Importance of Bioaccessibility, Absorption, and Transformation. Journal of Agricultural and Food Chemistry, 2017, 65, 3946-3955.	5.2	49
711	Mechanism and kinetics of tyrosinase inhibition by glycolic acid: a study using conventional spectroscopy methods and hydrogen/deuterium exchange coupling with mass spectrometry. Food and Function, 2017, 8, 122-131.	4.6	14
712	Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis, 2017, 38, 455-464.	2.8	43
713	Influence of anionic polysaccharides on the physical and oxidative stability of hydrolyzed rice glutelin emulsions: Impact of polysaccharide type and pH. Food Hydrocolloids, 2017, 72, 185-194.	10.7	49
714	Structure–Activity Relationship of Curcumin: Role of the Methoxy Group in Anti-inflammatory and Anticolitis Effects of Curcumin. Journal of Agricultural and Food Chemistry, 2017, 65, 4509-4515.	5 . 2	66
715	Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. Seminars in Cancer Biology, 2017, 46, 215-226.	9.6	55
716	Nanotechnology Approaches for Increasing Nutrient Bioavailability. Advances in Food and Nutrition Research, 2017, 81, 1-30.	3.0	233
717	Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocolloids, 2017, 71, 187-197.	10.7	71
718	Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles. Journal of Agricultural and Food Chemistry, 2017, 65, 4755-4765.	5 . 2	40
719	Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids, 2017, 72, 228-236.	10.7	92
720	Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 2017, 234, 445-454.	8.2	29

#	Article	IF	CITATIONS
721	Phytochemical profiles and antioxidant activity of processed brown rice products. Food Chemistry, 2017, 232, 67-78.	8.2	55
722	Fabrication of Surface-Active Antioxidant Food Biopolymers: Conjugation of Catechin Polymers to Egg White Proteins. Food Biophysics, 2017, 12, 198-210.	3.0	60
723	Gastrointestinal fate of emulsion-based ï‰-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering, 2017, 207, 90-98.	5. 2	60
724	Formation and Stability of i‰-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophysics, 2017, 12, 186-197.	3.0	104
725	Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. Journal of Food Engineering, 2017, 207, 35-45.	5.2	97
726	Formulation of food emulsions using natural emulsifiers: Utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. Journal of Food Engineering, 2017, 209, 1-11.	5.2	92
727	Influence of dietary fibers on lipid digestion: Comparison of single-stage and multiple-stage gastrointestinal models. Food Hydrocolloids, 2017, 69, 382-392.	10.7	54
728	Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin). Food Research International, 2017, 96, 103-112.	6.2	58
729	Antitumor and immunomodulatory effects of ginsenoside Rh2 and its octyl ester derivative in H22 tumor-bearing mice. Journal of Functional Foods, 2017, 32, 382-390.	3.4	51
730	Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food and Function, 2017, 8, 1688-1697.	4.6	36
731	Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. Journal of Agricultural and Food Chemistry, 2017, 65, 1525-1532.	5.2	398
732	Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Research International, 2017, 92, 48-55.	6.2	31
733	Controlling the gastrointestinal fate of nutraceutical and pharmaceutical-enriched lipid nanoparticles: From mixed micelles to chylomicrons. NanoImpact, 2017, 5, 13-21.	4.5	28
734	Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects. Advances in Colloid and Interface Science, 2017, 240, 31-59.	14.7	196
735	The future of food colloids: Next-generation nanoparticle delivery systems. Current Opinion in Colloid and Interface Science, 2017, 28, 7-14.	7.4	59
736	Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids, 2017, 66, 144-153.	10.7	225
737	Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins. Food Research International, 2017, 100, 175-185.	6.2	99
738	Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions. Journal of Agricultural and Food Chemistry, 2017, 65, 7781-7789.	5.2	26

#	Article	IF	CITATIONS
739	Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7, 25978-25986.	3.6	152
740	Control of protein digestion under simulated gastrointestinal conditions using biopolymer microgels. Food Research International, 2017, 100, 86-94.	6.2	36
741	Effect of the Composition and Structure of Excipient Emulsion on the Bioaccessibility of Pesticide Residue in Agricultural Products. Journal of Agricultural and Food Chemistry, 2017, 65, 9128-9138.	5.2	19
742	Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	6
743	Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International, 2017, 102, 274-281.	6.2	77
744	Encapsulation in lysozyme/ A. Sphaerocephala Krasch polysaccharide nanoparticles increases stability and bioefficacy of curcumin. Journal of Functional Foods, 2017, 38, 100-109.	3.4	20
745	Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environmental Science: Nano, 2017, 4, 2093-2107.	4.3	47
746	Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate. Food Research International, 2017, 100, 387-395.	6.2	41
747	Development of antimicrobial nanoemulsion-based delivery systems against selected pathogenic bacteria using a thymol-rich <i>Thymus daenensis</i> essential oil. Journal of Applied Microbiology, 2017, 123, 832-840.	3.1	44
748	Influence of hydroxypropyl methylcellulose, methylcellulose, gelatin, poloxamer 407 and poloxamer 188 on the formation and stability of soybean oil-in-water emulsions. Asian Journal of Pharmaceutical Sciences, 2017, 12, 521-531.	9.1	25
749	Enrichment of Bread with Nutraceuticalâ€Rich Mushrooms: Impact of <i>Auricularia auricula</i> (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread. Journal of Food Science, 2017, 82, 2041-2050.	3.1	30
750	Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydrate Polymers, 2017, 175, 265-272.	10.2	138
751	In vitro and in vivo inhibitory effects of a Pleurotus eryngii protein on colon cancer cells. Food and Function, 2017, 8, 3553-3562.	4.6	16
752	In Situ Interfacial Conjugation of Chitosan with Cinnamaldehyde during Homogenization Improves the Formation and Stability of Chitosan-Stabilized Emulsions. Langmuir, 2017, 33, 14608-14617.	3.5	57
7 53	Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Npj Science of Food, 2017, 1, 6.	5.5	325
754	Potential impact of inorganic nanoparticles on macronutrient digestion: titanium dioxide nanoparticles slightly reduce lipid digestion under simulated gastrointestinal conditions. Nanotoxicology, 2017, 11, 1087-1101.	3.0	29
755	Influence of Homogenization and Thermal Processing on the Gastrointestinal Fate of Bovine Milk Fat: In Vitro Digestion Study. Journal of Agricultural and Food Chemistry, 2017, 65, 11109-11117.	5.2	55
756	Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy. Journal of Food Science, 2017, 82, 2840-2846.	3.1	27

#	Article	IF	CITATIONS
757	Hurdles in Predicting Antioxidant Efficacy in Oil-in-water emulsions. Trends in Food Science and Technology, 2017, 67, 183-194.	15.1	93
758	Influence of homogenization on physical properties of model coffee creamers stabilized by quillaja saponin. Food Research International, 2017, 99, 770-777.	6.2	22
759	Controlling the potential gastrointestinal fate of \hat{i}^2 -carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry, 2017, 221, 395-403.	8.2	91
760	Fabrication of \hat{l}^2 -carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. Journal of Colloid and Interface Science, 2017, 490, 328-335.	9.4	92
761	Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocolloids, 2017, 64, 157-165.	10.7	231
762	Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers, 2017, 157, 842-849.	10.2	190
763	Utilization of anionic polysaccharides to improve the stability of rice glutelin emulsions: Impact of polysaccharide type, pH, salt, and temperature. Food Hydrocolloids, 2017, 64, 112-122.	10.7	104
764	Structural design approaches for creating fat droplet and starch granule mimetics. Food and Function, 2017, 8, 498-510.	4.6	16
765	Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage. Food Chemistry, 2017, 214, 702-709.	8.2	157
766	Inhibition of lipid oxidation in nanoemulsions and filled microgels fortified with omega-3 fatty acids using casein as a natural antioxidant. Food Hydrocolloids, 2017, 63, 240-248.	10.7	69
767	Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate Polymers, 2017, 156, 322-332.	10.2	90
768	Foodâ€Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 76-95.	11.7	246
769	Effect of pullulan on the digestible, crystalline and morphological characteristics of rice starch. Food Hydrocolloids, 2017, 63, 383-390.	10.7	82
770	A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocolloids, 2017, 63, 625-634.	10.7	261
771	Fluorescence imaging of spatial location of lipids and proteins during digestion of protein-stabilized oil-in-water emulsions: A simulated gastrointestinal tract study. Food Chemistry, 2017, 219, 297-303.	8.2	23
772	Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Materials Science and Engineering C, 2017, 72, 341-351.	7.3	68
773	Confocal fluorescence mapping of pH profile inside hydrogel beads (microgels) with controllable internal pH values. Food Hydrocolloids, 2017, 65, 198-205.	10.7	25
774	Influence of electrostatic interactions on behavior of mixed rice glutelin and alginate systems: pH and ionic strength effects. Food Hydrocolloids, 2017, 63, 301-308.	10.7	37

#	Article	IF	CITATIONS
775	Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chemistry, 2017, 218, 277-284.	8.2	103
776	Food-grade cationic antimicrobial $\hat{l}\mu$ -polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	5.5	31
777	Surface-Enhanced Raman Spectroscopy: A Tool for All Classes of Food Contaminants. , 2017, , .		1
778	An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 2017, 14, 40.	6.2	112
779	Nanoemulsification of Salvia officinalis Essential Oil; The Impact on the Antibacterial Activity in Liquid and Vapour Phase. Journal of Bionanoscience, 2017, 11, 80-86.	0.4	9
780	Food â~†., 2017, , 47-47.		3
781	Modulation of Lipid Digestion Profiles Using Filled Egg White Protein Microgels. Journal of Agricultural and Food Chemistry, 2017, 65, 6919-6928.	5.2	33
782	Formulation and Evaluation of Food-Grade Antimicrobial Cinnamon Oil Nanoemulsions for Helicobacter pylori Eradication. Journal of Bionanoscience, 2017, 11, 435-441.	0.4	2
783	3 Lipid-Based Emulsions and Emulsifiers. , 2017, , 73-108.		2
784	Nanotechnology in Food Processing. , 2016, , 49-55.		4
785	Extending Emulsion Functionality: Post-Homogenization Modification of Droplet Properties. Processes, 2016, 4, 17.	2.8	12
786	Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery. Frontiers in Microbiology, 2016, 7, 494.	3.5	125
787	Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials, 2016, 6, 17.	4.1	101
788	Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Proteinâ€Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides. Journal of Food Science, 2016, 81, C1636-45.	3.1	42
789	Identification of pinostilbene as a major colonic metabolite of pterostilbene and its inhibitory effects on colon cancer cells. Molecular Nutrition and Food Research, 2016, 60, 1924-1932.	3.3	69
790	Surfaceâ€enhanced Raman scattering characterization of monohydroxylated polymethoxyflavones. Journal of Raman Spectroscopy, 2016, 47, 901-907.	2.5	9
791	Comparison of bioactivities and phenolic composition of <i>Choerospondias axillaris</i> peels and fleshes. Journal of the Science of Food and Agriculture, 2016, 96, 2462-2471.	3.5	27
792	Chemical and Physical Stability of Astaxanthin-Enriched Emulsion-Based Delivery Systems. Food Biophysics, 2016, 11, 302-310.	3.0	62

#	Article	IF	CITATIONS
793	Inactivation of Salmonella on Sprouting Seeds Using a Spontaneous Carvacrol Nanoemulsion Acidified with Organic Acids. Journal of Food Protection, 2016, 79, 1115-1126.	1.7	16
794	Riboflavin-induced oxidation in fish oil-in-water emulsions: Impact of particle size and optical transparency. Food Chemistry, 2016, 213, 457-461.	8.2	20
795	Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids, 2016, 61, 703-711.	10.7	223
796	Enhanced Antiâ€Inflammatory Activities by the Combination of Luteolin and Tangeretin. Journal of Food Science, 2016, 81, H1320-7.	3.1	34
797	Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 9532-9541.	5.2	55
798	Label-free Imaging and Characterization of Cancer Cell Responses to Polymethoxyflavones Using Raman Microscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 9708-9713.	5.2	8
799	Encapsulation of Pancreatic Lipase in Hydrogel Beads with Self-Regulating Internal pH Microenvironments: Retention of Lipase Activity after Exposure to Gastric Conditions. Journal of Agricultural and Food Chemistry, 2016, 64, 9616-9623.	5.2	42
800	Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 79-87.	4.7	42
801	Specific detection of potassium ion in serum by a modified G-quadruplex method. RSC Advances, 2016, 6, 41999-42007.	3 . 6	13
802	Influence of Lipid Phase Composition of Excipient Emulsions on Curcumin Solubility, Stability, and Bioaccessibility. Food Biophysics, 2016, 11, 213-225.	3.0	58
803	Improvement of î ² -Carotene Bioaccessibility from Dietary Supplements Using Excipient Nanoemulsions. Journal of Agricultural and Food Chemistry, 2016, 64, 4639-4647.	5.2	37
804	Inhibitory Effects of Metabolites of 5-Demethylnobiletin on Human Nonsmall Cell Lung Cancer Cells. Journal of Agricultural and Food Chemistry, 2016, 64, 4943-4949.	5.2	40
805	Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chemistry, 2016, 205, 129-139.	8.2	138
806	Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 2016, 203, 430-439.	8.2	88
807	Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chemistry, 2016, 208, 309-317.	8.2	54
808	Proanthocyanidins, Isolated from <i>Choerospondias axillaris</i> Fruit Peels, Exhibit Potent Antioxidant Activities in Vitro and a Novel Anti-angiogenic Property in Vitro and in Vivo. Journal of Agricultural and Food Chemistry, 2016, 64, 3546-3556.	5.2	39
809	Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2016, 64, 3873-3880.	5.2	16
810	Role of continuous phase protein, (â^')-epigallocatechin-3-gallate and carrier oil on β-carotene degradation in oil-in-water emulsions. Food Chemistry, 2016, 210, 242-248.	8.2	23

#	Article	IF	Citations
811	Influence of emulsifier type on the inÂvitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids, 2016, 61, 92-101.	10.7	174
812	Natural emulsifiers â€" Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Advances in Colloid and Interface Science, 2016, 234, 3-26.	14.7	676
813	Encapsulation of \hat{l}^2 -carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, 2016, 61, 1-10.	10.7	154
814	Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. Journal of Agricultural and Food Chemistry, 2016, 64, 3653-3660.	5.2	49
815	Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers. Food Research International, 2016, 85, 162-169.	6.2	34
816	Enhancement of lycopene bioaccessibility from tomato juice using excipient emulsions: Influence of lipid droplet size. Food Chemistry, 2016, 210, 295-304.	8.2	94
817	Influence of surfactant type and thermal cycling on formation and stability of flavor oil emulsions fabricated by spontaneous emulsification. Food Research International, 2016, 89, 296-301.	6.2	14
818	Octyl Ester of Ginsenoside Rh2 Induces Apoptosis and G1 Cell Cycle Arrest in Human HepG2 Cells by Activating the Extrinsic Apoptotic Pathway and Modulating the Akt/p38 MAPK Signaling Pathway. Journal of Agricultural and Food Chemistry, 2016, 64, 7520-7529.	5.2	18
819	Stereoisomers of Astaxanthin Inhibit Human Colon Cancer Cell Growth by Inducing G2/M Cell Cycle Arrest and Apoptosis. Journal of Agricultural and Food Chemistry, 2016, 64, 7750-7759.	5.2	42
820	Biopolymer-stabilized conjugated linoleic acid (CLA) oil-in-water emulsions: Impact of electrostatic interactions on formation and stability of pectin-caseinate-coated lipid droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 172-179.	4.7	16
821	Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chemistry, 2016, 213, 431-439.	8.2	164
822	Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein. Food Chemistry, 2016, 213, 700-707.	8.2	50
823	Improvement in storage stability of lightly milled rice using superheated steam processing. Journal of Cereal Science, 2016, 71, 130-137.	3.7	33
824	Formation of Foodâ€Grade Nanoemulsions Using Lowâ€Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 331-352.	11.7	317
825	Potential physicochemical basis of Mediterranean diet effect: Ability of emulsified olive oil to increase carotenoid bioaccessibility in raw and cooked tomatoes. Food Research International, 2016, 89, 320-329.	6.2	36
826	Evaluation of Postharvest Washing on Removal of Silver Nanoparticles (AgNPs) from Spinach Leaves. Journal of Agricultural and Food Chemistry, 2016, 64, 6916-6922.	5.2	17
827	Biological macromolecule delivery system for improving functional performance of hydrophobic nutraceuticals. Current Opinion in Food Science, 2016, 9, 56-61.	8.0	23
828	Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2016, 64, 9436-9441.	5.2	47

#	Article	IF	CITATIONS
829	Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: Emulsion-based delivery and excipient systems. Food Structure, 2016, 10, 21-36.	4.5	45
830	Physical and oxidation stability of self-emulsifying krill oil-in-water emulsions. Food and Function, 2016, 7, 3590-3598.	4.6	18
831	Tailoring lipid digestion profiles using combined delivery systems: mixtures of nanoemulsions and filled hydrogel beads. RSC Advances, 2016, 6, 65631-65637.	3.6	11
832	The role of the food matrix and gastrointestinal tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact, 2016, 3-4, 47-57.	4.5	103
833	Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified from Bacillus Calmette Guerin formulation. Carbohydrate Polymers, 2016, 150, 149-158.	10.2	92
834	Correction: Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food and Function, 2016, 7, 2909-2909.	4.6	6
835	Enhancement of curcumin water dispersibility and antioxidant activity using core–shell protein–polysaccharide nanoparticles. Food Research International, 2016, 87, 1-9.	6.2	161
836	Influence of methylcellulose on attributes of \hat{l}^2 -carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Research International, 2016, 87, 18-24.	6.2	35
837	Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 2016, 61, 662-671.	10.7	223
838	Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chemistry, 2016, 213, 143-148.	8.2	97
839	Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocolloids, 2016, 61, 251-260.	10.7	164
840	Freeze-thaw stability of rice starch modified by Improved Extrusion Cooking Technology. Carbohydrate Polymers, 2016, 151, 113-118.	10.2	78
841	Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of \hat{l}^2 -carotene emulsions. Food Hydrocolloids, 2016, 61, 578-588.	10.7	161
842	Improvement in nutritional attributes of rice using superheated steam processing. Journal of Functional Foods, 2016, 24, 338-350.	3.4	51
843	Stabilization of natural colors and nutraceuticals: Inhibition of anthocyanin degradation in model beverages using polyphenols. Food Chemistry, 2016, 212, 596-603.	8.2	96
844	Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Journal of Colloid and Interface Science, 2016, 479, 71-79.	9.4	188
845	Enhancement of Nutraceutical Bioavailability using Excipient Nanoemulsions: Role of Lipid Digestion Products on Bioaccessibility of Carotenoids and Phenolics from Mangoes. Journal of Food Science, 2016, 81, N754-61.	3.1	56
846	Effects of aleurone layer on rice cooking: A histological investigation. Food Chemistry, 2016, 191, 28-35.	8.2	41

#	Article	IF	CITATIONS
847	Encapsulation of protein nanoparticles within alginate microparticles: Impact of pH and ionic strength on functional performance. Journal of Food Engineering, 2016, 178, 81-89.	5.2	41
848	Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. Journal of Colloid and Interface Science, 2016, 466, 206-212.	9.4	88
849	Encapsulation of lactase (\hat{l}^2 -galactosidase) into \hat{l}^2 -carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chemistry, 2016, 200, 69-75.	8.2	84
850	Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 2016, 201, 14-22.	8.2	88
851	Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chemistry, 2016, 202, 156-164.	8.2	101
852	Lutein-enriched emulsion-based delivery systems: Impact of Maillard conjugation on physicochemical stability and gastrointestinal fate. Food Hydrocolloids, 2016, 60, 38-49.	10.7	101
853	Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opinion on Drug Delivery, 2016, 13, 1327-1336.	5.0	93
854	Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT - Food Science and Technology, 2016, 71, 69-76.	5.2	89
855	Physicochemical properties and antioxidant potential of phosvitin–resveratrol complexes in emulsion system. Food Chemistry, 2016, 206, 102-109.	8.2	34
856	Encapsulation of \hat{l}^2 -carotene in Nanoemulsion-Based Delivery Systems Formed by Spontaneous Emulsification: Influence of Lipid Composition on Stability and Bioaccessibility. Food Biophysics, 2016, 11, 154-164.	3.0	55
857	Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems. Food Chemistry, 2016, 202, 451-457.	8.2	33
858	InÂvitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe, 2016, 39, 19-25.	2.1	78
859	Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food Chemistry, 2016, 203, 331-339.	8.2	98
860	Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 2016, 199, 439-446.	8.2	61
861	Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions. Food Biophysics, 2016, 11, 142-153.	3.0	35
862	Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocolloids, 2016, 58, 308-315.	10.7	200
863	Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids, 2016, 58, 160-170.	10.7	133
864	Characterization of mucin – lipid droplet interactions: Influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocolloids, 2016, 56, 425-433.	10.7	45

#	Article	IF	CITATIONS
865	Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Research International, 2016, 81, 74-82.	6.2	163
866	Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids. Food Chemistry, 2016, 199, 862-869.	8.2	12
867	Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Advances, 2016, 6, 3126-3136.	3.6	93
868	Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydrate Polymers, 2016, 136, 1091-1097.	10.2	66
869	Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Research International, 2016, 88, 140-152.	6.2	81
870	Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food and Function, 2016, 7, 1797-1804.	4.6	69
871	Particle size distribution of wheat starch granules in relation to baking properties of frozen dough. Carbohydrate Polymers, 2016, 137, 147-153.	10.2	71
872	Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions. Food Chemistry, 2016, 197, 1130-1135.	8.2	38
873	Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. Food and Function, 2016, 7, 93-103.	4.6	101
874	Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 2016, 196, 396-404.	8.2	118
875	Impact of Lipid Content on the Ability of Excipient Emulsions to Increase Carotenoid Bioaccessibility from Natural Sources (Raw and Cooked Carrots). Food Biophysics, 2016, 11, 71-80.	3.0	40
876	Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability. Food Biophysics, 2016, 11, 52-59.	3.0	76
877	Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry, 2016, 196, 821-827.	8.2	86
878	Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids, 2016, 52, 690-698.	10.7	68
879	Competitive adsorption and displacement of anionic polysaccharides (fucoidan and gum arabic) on the surface of protein-coated lipid droplets. Food Hydrocolloids, 2016, 52, 820-826.	10.7	46
880	Application of ITC in foods: A powerful tool for understanding the gastrointestinal fate of lipophilic compounds. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1026-1035.	2.4	26
881	Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chemistry, 2016, 194, 671-679.	8.2	68
882	Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 2016, 7, 1-6.	8.0	336

#	Article	IF	CITATIONS
883	Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: Comparison of citrus and banana passion fruit (Passiflora tripartita var. mollissima) pectins. Food Hydrocolloids, 2016, 52, 329-342.	10.7	106
884	Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 2016, 194, 410-415.	8.2	322
885	Impact of $\hat{l}\mu$ -polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model. Food Chemistry, 2016, 192, 857-864.	8.2	23
886	Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles. Critical Reviews in Food Science and Nutrition, 2016, 56, 1334-1362.	10.3	55
887	Influence of Nanoemulsion Addition on the Stability of Conventional Emulsions. Food Biophysics, 2016, 11, 1-9.	3.0	26
888	Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Critical Reviews in Food Science and Nutrition, 2016, 56, 650-685.	10.3	61
889	Translocation of Gold Nanoparticles in Model Epithelial Cells (Cacoâ€2 Monolayers). FASEB Journal, 2016, 30, lb201.	0.5	0
890	Potential adverse effects of polyunsaturated fatty acids: Influence of lipid oxidation on lymphatic transport of lipophilic bioactive components and cell morphology. FASEB Journal, 2016, 30, lb339.	0.5	0
891	Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability. Journal of Food Science, 2015, 80, N1602-11.	3.1	239
892	Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 824-847.	11.7	108
893	Chemopreventive effects of nobiletin and its colonic metabolites on colon carcinogenesis. Molecular Nutrition and Food Research, 2015, 59, 2383-2394.	3.3	75
894	Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice. Journal of Food Science, 2015, 80, C1476-89.	3.1	50
895	Curcumin inhibits lymphangiogenesis in vitro and in vivo. Molecular Nutrition and Food Research, 2015, 59, 2345-2354.	3.3	19
896	Engineering Hydrogel Microspheres for Healthy and Tasty Foods., 2015,, 131-149.		1
897	The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules, 2015, 20, 14293-14311.	3.8	265
898	Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study. Food and Function, 2015, 6, 124-133.	4.6	14
899	Effects of Granule Size of Cross-Linked and Hydroxypropylated Sweet Potato Starches on Their Physicochemical Properties. Journal of Agricultural and Food Chemistry, 2015, 63, 4646-4654.	5 . 2	29
900	Structure and texture development of food-emulsion products. , 2015, , 133-155.		4

#	Article	IF	CITATIONS
901	Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocolloids, 2015, 51, 252-260.	10.7	53
902	Simulated gastrointestinal fate of lipids encapsulated in starch hydrogels: Impact of normal and high amylose corn starch. Food Research International, 2015, 78, 79-87.	6.2	26
903	Direct Fluorescent Detection of a Polymethoxyflavone in Cell Culture and Mouse Tissue. Journal of Agricultural and Food Chemistry, 2015, 63, 10620-10627.	5.2	9
904	Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability. Food Research International, 2015, 78, 18-26.	6.2	36
905	Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters. Journal of Agricultural and Food Chemistry, 2015, 63, 10161-10169.	5.2	36
906	Microstructural, rheological, and antibacterial properties of cross-linked chitosan emulgels. RSC Advances, 2015, 5, 100114-100122.	3.6	28
907	Inhibitory Effects of 4′-Demethylnobiletin, a Metabolite of Nobiletin, on 12- <i>O</i> -Tetradecanoylphorbol-13-acetate (TPA)-Induced Inflammation in Mouse Ears. Journal of Agricultural and Food Chemistry, 2015, 63, 10921-10927.	5.2	35
908	Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: Optical properties, rheology, and stability. Food Hydrocolloids, 2015, 46, 67-75.	10.7	53
909	A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (â^')-epigallocatechin gallate. Food Research International, 2015, 69, 114-120.	6.2	50
910	Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Current Opinion in Food Science, 2015, 2, 14-19.	8.0	131
911	Fabrication of Lipophilic Nanoparticles by Spontaneous Emulsification: Stabilization by Cosurfactants. Food Biophysics, 2015, 10, 83-93.	3.0	7
912	Controlling lipid digestion using enzyme-induced crosslinking ofÂbiopolymer interfacial layers in multilayer emulsions. Food Hydrocolloids, 2015, 46, 125-133.	10.7	64
913	Fabrication, characterization and properties of filled hydrogel particles formed by the emulsion-template method. Journal of Food Engineering, 2015, 155, 16-21.	5.2	28
914	Electrostatic modulation and enzymatic cross-linking of interfacial layers impacts gastrointestinal fate of multilayer emulsions. Food Chemistry, 2015, 180, 257-264.	8.2	32
915	Formation of transparent solid lipid nanoparticles by microfluidization: Influence of lipid physical state on appearance. Journal of Colloid and Interface Science, 2015, 448, 114-122.	9.4	32
916	How the Multiple Antioxidant Properties of Ascorbic Acid Affect Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 1819-1824.	5.2	51
917	Utilizing Food Matrix Effects To Enhance Nutraceutical Bioavailability: Increase of Curcumin Bioaccessibility Using Excipient Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 2052-2062.	5.2	107
918	Microgels formed by electrostatic complexation of gelatin and OSA starch: Potential fat or starch mimetics. Food Hydrocolloids, 2015, 47, 87-93.	10.7	55

#	Article	IF	CITATIONS
919	Analysis of 10 Metabolites of Polymethoxyflavones with High Sensitivity by Electrochemical Detection in High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 2015, 63, 509-516.	5.2	39
920	Influence of Physical State of \hat{l}^2 -Carotene (Crystallized versus Solubilized) on Bioaccessibility. Journal of Agricultural and Food Chemistry, 2015, 63, 990-997.	5.2	38
921	Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter, $2015, 11, 2228-2236$.	2.7	85
922	Food-grade filled hydrogels for oral delivery of lipophilic active ingredients: Temperature-triggered release microgels. Food Research International, 2015, 69, 274-280.	6.2	42
923	Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal, 2015, 72, 698-716.	5.4	148
924	Nanoemulsion-based delivery systems for nutraceuticals: Influence of carrier oil type on bioavailability of pterostilbene. Journal of Functional Foods, 2015, 13, 61-70.	3.4	93
925	Enhancing nutraceutical bioavailability through food matrix design. Current Opinion in Food Science, 2015, 4, 1-6.	8.0	75
926	Impact of phase separation of soy protein isolate/sodium alginate co-blending mixtures on gelation dynamics and gels properties. Carbohydrate Polymers, 2015, 125, 169-179.	10.2	26
927	The Nutraceutical Bioavailability Classification Scheme: Classifying Nutraceuticals According to Factors Limiting their Oral Bioavailability. Annual Review of Food Science and Technology, 2015, 6, 299-327.	9.9	227
928	Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science, 2015, 219, 27-53.	14.7	350
929	Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion. Journal of Food Science and Technology, 2015, 52, 6520-6528.	2.8	16
930	Designing self-nanoemulsifying delivery systems to enhance bioaccessibility of hydrophobic bioactives (nobiletin): Influence ofÂhydroxypropyl methylcellulose and thermal processing. Food Hydrocolloids, 2015, 51, 395-404.	10.7	47
931	Fabrication of protein nanoparticles and microparticles within water domains formed in surfactant–oil–water mixtures: Phase inversion temperature method. Food Hydrocolloids, 2015, 51, 441-448.	10.7	13
932	In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: Impact of lipid carrier type. Journal of Functional Foods, 2015, 17, 293-304.	3.4	103
933	Starch sodium dodecenyl succinate prepared by one-step extrusion and its properties. Carbohydrate Polymers, 2015, 133, 90-93.	10.2	16
934	Tuneable stability of nanoemulsions fabricated using spontaneous emulsification by biopolymer electrostatic deposition. Journal of Colloid and Interface Science, 2015, 455, 172-178.	9.4	13
935	Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Research International, 2015, 76, 761-768.	6.2	146
936	Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch. Carbohydrate Polymers, 2015, 133, 61-66.	10.2	26

#	Article	IF	CITATIONS
937	Design of reduced-fat food emulsions: Manipulating microstructure and rheology through controlled aggregation of colloidal particles and biopolymers. Food Research International, 2015, 76, 777-786.	6.2	30
938	Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food and Function, 2015, 6, 2475-2486.	4.6	84
939	Surfactant Concentration, Antioxidants, and Chelators Influencing Oxidative Stability of Waterâ€inâ€Walnut Oil Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1093-1102.	1.9	16
940	Comparative study on the effects of nystose and fructofuranosyl nystose in the glycation reaction on the antigenicity and conformation of \hat{l}^2 -lactoglobulin. Food Chemistry, 2015, 188, 658-663.	8.2	26
941	Impact of a food-grade cationic biopolymer (ε-polylysine) on the digestion of emulsified lipids: In vitro study. Food Research International, 2015, 75, 34-40.	6.2	8
942	Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering, 2015, 164, 10-20.	5. 2	117
943	Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry, 2015, 185, 261-267.	8.2	262
944	Thermal reversibility of vitamin E-enriched emulsion-based delivery systems produced using spontaneous emulsification. Food Chemistry, 2015, 185, 254-260.	8.2	30
945	Influence of anionic dietary fibers (xanthan gum and pectin) on oxidative stability and lipid digestibility of wheat protein-stabilized fish oil-in-water emulsion. Food Research International, 2015, 74, 131-139.	6.2	76
946	Protein-Polysaccharide Hydrogel Particles Formed by Biopolymer Phase Separation. Food Biophysics, 2015, 10, 334-341.	3.0	7
947	Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocolloids, 2015, 50, 27-36.	10.7	89
948	Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2015, 449, 13-20.	9.4	21
949	Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 2: Stability and functionality. Food Hydrocolloids, 2015, 49, 127-134.	10.7	138
950	Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study. Food Research International, 2015, 75, 71-78.	6.2	144
951	Challenges of Utilizing Healthy Fats in Foods. Advances in Nutrition, 2015, 6, 309S-317S.	6.4	44
952	Reduced-Fat Foods: The Complex Science of Developing Diet-Based Strategies for Tackling Overweight and Obesity. Advances in Nutrition, 2015, 6, 338S-352S.	6.4	74
953	Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 onÂcontaminated broccoli and radish seeds. Food Microbiology, 2015, 51, 10-17.	4.2	64
954	Food-Grade Protein-Based Nanoparticles and Microparticles for Bioactive Delivery. Advances in Protein Chemistry and Structural Biology, 2015, 98, 293-325.	2.3	56

#	Article	IF	CITATIONS
955	Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environmental Science & Eamp; Technology, 2015, 49, 4317-4324.	10.0	98
956	Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. Journal of Functional Foods, 2015, 15, 72-83.	3.4	152
957	Impact of Phosphatidylethanolamine on the Antioxidant Activity of α-Tocopherol and Trolox in Bulk Oil. Journal of Agricultural and Food Chemistry, 2015, 63, 3288-3294.	5.2	60
958	Controlling microstructure and physical properties of biopolymer hydrogel particles through modulation of electrostatic interactions. Journal of Food Engineering, 2015, 158, 13-21.	5.2	23
959	Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry, 2015, 187, 499-506.	8.2	263
960	Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry, 2015, 188, 256-263.	8.2	286
961	Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them. Food Chemistry, 2015, 184, 207-213.	8.2	46
962	Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chemistry, 2015, 182, 275-281.	8.2	367
963	Improving Resveratrol Bioaccessibility Using Biopolymer Nanoparticles and Complexes: Impact of Protein–Carbohydrate Maillard Conjugation. Journal of Agricultural and Food Chemistry, 2015, 63, 3915-3923.	5.2	170
964	Functional hydrogel microspheres: Parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Research International, 2015, 72, 231-240.	6.2	35
965	Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes. International Journal of Biological Macromolecules, 2015, 81, 942-950.	7.5	62
966	Formation of thermally reversible optically transparent emulsion-based delivery systems using spontaneous emulsification. Soft Matter, 2015, 11, 9321-9329.	2.7	15
967	Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes. Food and Function, 2015, 6, 3693-3701.	4.6	36
968	Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Research International, 2015, 78, 378-387.	6.2	32
969	Development of hydrocolloid microgels as starch granule mimetics: Hydrogel particles fabricated from gelatin and pectin. Food Research International, 2015, 78, 177-185.	6.2	16
970	Anti-inflammatory effects of $4\hat{a}\in^2$ -demethylnobiletin, a major metabolite of nobiletin. Journal of Functional Foods, 2015, 19, 278-287.	3.4	49
971	Physical Stability, Autoxidation, and Photosensitized Oxidation of I‰-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants. Journal of Agricultural and Food Chemistry, 2015, 63, 9333-9340.	5.2	98
972	Uptake of Gold Nanoparticles by Intestinal Epithelial Cells: Impact of Particle Size on Their Absorption, Accumulation, and Toxicity. Journal of Agricultural and Food Chemistry, 2015, 63, 8044-8049.	5.2	99

#	Article	IF	CITATIONS
973	Increasing Carotenoid Bioaccessibility from Yellow Peppers Using Excipient Emulsions: Impact of Lipid Type and Thermal Processing. Journal of Agricultural and Food Chemistry, 2015, 63, 8534-8543.	5.2	64
974	Effect of Maillard Conjugates on the Physical Stability of Zein Nanoparticles Prepared by Liquid Antisolvent Coprecipitation. Journal of Agricultural and Food Chemistry, 2015, 63, 8510-8518.	5.2	79
975	Improving nutraceutical bioavailability using mixed colloidal delivery systems: lipid nanoparticles increase tangeretin bioaccessibility and absorption from tangeretin-loaded zein nanoparticles. RSC Advances, 2015, 5, 73892-73900.	3.6	28
976	Potential impact of biopolymers (ε-polylysine and/or pectin) on gastrointestinal fate of foods: In vitro study. Food Research International, 2015, 76, 769-776.	6.2	6
977	Response to Comment on New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 2015, 63, 10354-10354.	5.2	5
978	Modulating the morphology of hydrogel particles by thermal annealing: mixed biopolymer electrostatic complexes. Journal Physics D: Applied Physics, 2015, 48, 434002.	2.8	11
979	Formation of Oil-in-Water Emulsions from Natural Emulsifiers Using Spontaneous Emulsification: Sunflower Phospholipids. Journal of Agricultural and Food Chemistry, 2015, 63, 10078-10088.	5.2	39
980	Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots. Journal of Agricultural and Food Chemistry, 2015, 63, 10508-10517.	5 . 2	64
981	The Physical Characterization and Sorption Isotherm of Rice Bran Oil Powders Stabilized by Food-Grade Biopolymers. Drying Technology, 2015, 33, 479-492.	3.1	13
982	Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International, 2015, 69, 1-8.	6.2	157
983	Influence of emulsifier type on gastrointestinal fate of oil-in-water emulsions containing anionic dietary fiber (pectin). Food Hydrocolloids, 2015, 45, 175-185.	10.7	201
984	Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 2015, 175, 16-24.	8.2	102
985	Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry, 2015, 175, 249-257.	8.2	139
986	Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocolloids, 2015, 45, 309-316.	10.7	175
987	Enhancing vitamin E bioaccessibility: factors impacting solubilization and hydrolysis of α-tocopherol acetate encapsulated in emulsion-based delivery systems. Food and Function, 2015, 6, 83-96.	4.6	49
988	What Makes Good Antioxidants in Lipid-Based Systems? The Next Theories Beyond the Polar Paradox. Critical Reviews in Food Science and Nutrition, 2015, 55, 183-201.	10.3	251
989	Slowly Digestible Starch—A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1642-1657.	10.3	205
990	Gliadin-based nanoparticles: Stabilization by post-production polysaccharide coating. Food Hydrocolloids, 2015, 43, 236-242.	10.7	107

#	Article	IF	CITATIONS
991	Pectin Modifications: A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1684-1698.	10.3	201
992	Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food and Function, 2015, 6, 41-54.	4.6	204
993	Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloids, 2015, 44, 380-389.	10.7	95
994	Development of food-grade filled hydrogels for oral delivery of lipophilic active ingredients: pH-triggered release. Food Hydrocolloids, 2015, 44, 345-352.	10.7	70
995	Control of \hat{I}^2 -carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 2015, 173, 454-461.	8.2	139
996	Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chemistry, 2015, 171, 117-122.	8.2	275
997	Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chemistry, 2015, 167, 205-212.	8.2	256
998	Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition. Food Hydrocolloids, 2015, 43, 377-387.	10.7	133
999	Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles. Food Hydrocolloids, 2015, 44, 101-108.	10.7	227
1000	Gliadin-based nanoparticles: Fabrication and stability of food-grade colloidal delivery systems. Food Hydrocolloids, 2015, 44, 86-93.	10.7	102
1001	Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chemistry, 2015, 172, 298-304.	8.2	115
1002	Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 2015, 146, 122-128.	5.2	146
1003	Biopolymer-Based Delivery Systems: Challenges and Opportunities. Current Topics in Medicinal Chemistry, 2015, 16, 1026-1039.	2.1	68
1004	Controlling the gastrointestinal fate of nutraceuticalâ€enriched lipid nanoparticles: From mixed micelles to chylomicrons. FASEB Journal, 2015, 29, 249.6.	0.5	1
1005	Association Colloids Formed by Multiple Surface Active Minor Components and Their Effect on Lipid Oxidation in Bulk Oil. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1955-1965.	1.9	39
1006	Impact of Phosphoethanolamine Reverse Micelles on Lipid Oxidation in Bulk Oils. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1931-1937.	1.9	31
1007	Interaction of a Dietary Fiber (Pectin) with Gastrointestinal Components (Bile Salts, Calcium, and) Tj ETQq1 1 0.7 Chemistry, 2014, 62, 12620-12630.	84314 rgB 5.2	ST Overloc <mark>k</mark> 69
1008	Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation. Journal of Physics Condensed Matter, 2014, 26, 464104.	1.8	39

#	Article	IF	CITATIONS
1009	Electrostatic interactions of cationic lauric arginate with anionic polysaccharides affect antimicrobial activity against spoilage yeasts. Journal of Applied Microbiology, 2014, 117, 28-39.	3.1	28
1010	Alterations in nanoparticle protein corona by biological surfactants: Impact of bile salts on β-lactoglobulin-coated gold nanoparticles. Journal of Colloid and Interface Science, 2014, 426, 333-340.	9.4	33
1011	Antimicrobial delivery systems based on electrostatic complexes ofÂcationic É>-polylysine and anionic gum arabic. Food Hydrocolloids, 2014, 35, 137-143.	10.7	39
1012	Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 2014, 42, 5-41.	10.7	305
1013	Modulating lipid droplet intestinal lipolysis by electrostatic complexation with anionic polysaccharides: Influence of cosurfactants. Food Hydrocolloids, 2014, 35, 367-374.	10.7	53
1014	Impact of Free Fatty Acids and Phospholipids on Reverse Micelles Formation and Lipid Oxidation in Bulk Oil. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 453-462.	1.9	37
1015	Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water systems. Journal of Colloid and Interface Science, 2014, 425, 59-66.	9.4	84
1016	Stabilization of vitamin E-enriched mini-emulsions: Influence of organic and aqueous phase compositions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 65-73.	4.7	35
1017	Influence of non-migratory metal-chelating active packaging film on food quality: Impact on physical and chemical stability of emulsions. Food Chemistry, 2014, 151, 257-265.	8.2	22
1018	Impact of diacylglycerol and monoacylglycerol on the physical and chemical properties of stripped soybean oil. Food Chemistry, 2014, 142, 365-372.	8.2	27
1019	Lipid and lipid oxidation analysis using surface enhanced Raman spectroscopy (SERS) coupled with silver dendrites. Food Research International, 2014, 58, 1-6.	6.2	29
1020	Effect of frozen storage on physico-chemistry of wheat gluten proteins: Studies on gluten-, glutenin-and gliadin-rich fractions. Food Hydrocolloids, 2014, 39, 187-194.	10.7	194
1021	Influence of whey proteinâ \in "beet pectin conjugate on the properties and digestibility of \hat{l}^2 -carotene emulsion during in vitro digestion. Food Chemistry, 2014, 156, 374-379.	8.2	107
1022	Surfaceâ€Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 317-328.	11.7	275
1023	Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chemistry, 2014, 156, 117-122.	8.2	133
1024	Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chemistry, 2014, 158, 255-261.	8.2	128
1025	Understanding multicomponent emulsion-based products: Influence of locust bean gum on fat droplet â€" Starch granule mixtures. Food Hydrocolloids, 2014, 35, 315-323.	10.7	24
1026	Development of Reduced-calorie foods: Microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Research International, 2014, 56, 136-145.	6.2	67

#	Article	IF	CITATIONS
1027	Purification and characterization of a natural antioxidant peptide from fertilized eggs. Food Research International, 2014, 56, 18-24.	6.2	49
1028	Spectroscopic studies of conformational changes of \hat{l}^2 -lactoglobulin adsorbed on gold nanoparticle surfaces. Journal of Colloid and Interface Science, 2014, 416, 184-189.	9.4	18
1029	Optimizing delivery systems for cationic biopolymers: Competitive interactions of cationic polylysine with anionic \hat{l}^2 -carrageenan and pectin. Food Chemistry, 2014, 153, 9-14.	8.2	36
1030	Effect of Salts on Formation and Stability of Vitamin E-Enriched Mini-emulsions Produced by Spontaneous Emulsification. Journal of Agricultural and Food Chemistry, 2014, 62, 11246-11253.	5.2	28
1031	A standardised static <i>in vitro</i> digestion method suitable for food – an international consensus. Food and Function, 2014, 5, 1113-1124.	4.6	3,730
1032	In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles. Analyst, The, 2014, 139, 5075-5078.	3.5	4
1033	Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS). Analyst, The, 2014, 139, 3352-3355.	3.5	12
1034	Increased Antioxidant Efficacy of Tocopherols by Surfactant Solubilization in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 10561-10566.	5.2	60
1035	Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food and Function, 2014, 5, 1320-1333.	4.6	167
1036	Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid and Interface Science, 2014, 19, 417-427.	7.4	389
1037	Influence of Aqueous Phase Emulsifiers on Lipid Oxidation in Water-in-Walnut Oil Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 2104-2111.	5.2	57
1038	Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions. Food and Function, 2014, 5, 3083-3095.	4.6	168
1039	Nanotechnology for increased micronutrient bioavailability. Trends in Food Science and Technology, 2014, 40, 168-182.	15.1	193
1040	Impact of Environmental Stresses on Orange Oil-in-Water Emulsions Stabilized by Sucrose Monopalmitate and Lysolecithin. Journal of Agricultural and Food Chemistry, 2014, 62, 3257-3261.	5.2	18
1041	Factors Influencing the Freezeâ€Thaw Stability of Emulsionâ€Based Foods. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 98-113.	11.7	171
1042	Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds. International Journal of Food Microbiology, 2014, 187, 15-21.	4.7	53
1043	Stabilization of Vitamin E-Enriched Nanoemulsions: Influence of Post-Homogenization Cosurfactant Addition. Journal of Agricultural and Food Chemistry, 2014, 62, 1625-1633.	5.2	39
1044	Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of Colloid and Interface Science, 2014, 433, 196-203.	9.4	36

#	Article	IF	CITATIONS
1045	Encapsulation, protection, and release of polyunsaturated lipids using biopolymer-based hydrogel particles. Food Research International, 2014, 64, 520-526.	6.2	69
1046	Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method. Food Research International, 2014, 64, 329-335.	6.2	141
1047	Interaction of cationic antimicrobial (É>-polylysine) with food-grade biopolymers: Dextran, chitosan, carrageenan, alginate, and pectin. Food Research International, 2014, 64, 396-401.	6.2	36
1048	Improved in vitro digestion stability of (â^')-epigallocatechin gallate through nanoliposome encapsulation. Food Research International, 2014, 64, 492-499.	6.2	121
1049	Reduced calorie emulsion-based foods: Protein microparticles and dietary fiber as fat replacers. Food Research International, 2014, 64, 664-676.	6.2	35
1050	Characterization and Bioavailability of Tea Polyphenol Nanoliposome Prepared by Combining an Ethanol Injection Method with Dynamic High-Pressure Microfluidization. Journal of Agricultural and Food Chemistry, 2014, 62, 934-941.	5.2	135
1051	Tangeretin-loaded protein nanoparticles fabricated from zein/ \hat{l}^2 -lactoglobulin: Preparation, characterization, and functional performance. Food Chemistry, 2014, 158, 466-472.	8.2	126
1052	Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science and Technology, 2014, 39, 18-39.	15.1	385
1053	Emulsifying and Emulsion-Stabilizing Properties of Gluten Hydrolysates. Journal of Agricultural and Food Chemistry, 2014, 62, 2623-2630.	5.2	32
1054	Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces B: Biointerfaces, 2014, 117, 330-337.	5.0	161
1055	Delivery of Lipophilic Bioactives: Assembly, Disassembly, and Reassembly of Lipid Nanoparticles. Annual Review of Food Science and Technology, 2014, 5, 53-81.	9.9	179
1056	Improving intracellular uptake of 5-demethyltangeretin by food grade nanoemulsions. Food Research International, 2014, 62, 98-103.	6.2	24
1057	Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 2014, 151, 154-160.	8.2	165
1058	Influence of cosurfactant on the behavior of structured emulsions under simulated intestinal lipolysis conditions. Food Hydrocolloids, 2014, 40, 96-103.	10.7	9
1059	Nanoemulsion-Based Delivery Systems for Polyunsaturated (ω-3) Oils: Formation Using a Spontaneous Emulsification Method. Journal of Agricultural and Food Chemistry, 2014, 62, 1720-1725.	5. 2	112
1060	Optimization of Orange Oil Nanoemulsion Formation by Isothermal Low-Energy Methods: Influence of the Oil Phase, Surfactant, and Temperature. Journal of Agricultural and Food Chemistry, 2014, 62, 2306-2312.	5.2	148
1061	Engineered Nanoscale Food Ingredients: Evaluation of Current Knowledge on Material Characteristics Relevant to Uptake from the Gastrointestinal Tract. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 730-744.	11.7	85
1062	Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin. Journal of Food Engineering, 2014, 142, 57-63.	5.2	212

#	Article	IF	CITATIONS
1063	Structure–function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 2014, 1, 106-126.	4.5	79
1064	The effect of high speed shearing on disaggregation and degradation of pectin from creeping fig seeds. Food Chemistry, 2014, 165, 1-8.	8.2	35
1065	Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in Food Science and Technology, 2014, 38, 88-103.	15.1	236
1066	Potential Biological Fate of Emulsion-Based Delivery Systems: Lipid Particles Nanolaminated with Lactoferrin and \hat{I}^2 -lactoglobulin Coatings. Pharmaceutical Research, 2013, 30, 3200-3213.	3.5	46
1067	Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chemistry, 2013, 141, 473-481.	8.2	199
1068	Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Therapeutic Delivery, 2013, 4, 841-857.	2.2	94
1069	Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of low-energy nanoemulsions. Journal of Colloid and Interface Science, 2013, 404, 215-222.	9.4	72
1070	Influence of non-ionic surfactant on electrostatic complexation of protein-coated oil droplets and ionic biopolymers (alginate and chitosan). Food Hydrocolloids, 2013, 33, 368-375.	10.7	24
1071	Influence of pH, metal chelator, free radical scavenger and interfacial characteristics on the oxidative stability of β-carotene in conjugated whey protein–pectin stabilised emulsion. Food Chemistry, 2013, 139, 1098-1104.	8.2	37
1072	Oil-filled hydrogel particles for reduced-fat food applications: Fabrication, characterization, and properties. Innovative Food Science and Emerging Technologies, 2013, 20, 324-334.	5 . 6	67
1073	Creating novel food textures: Modifying rheology of starch granule suspensions by cold-set whey protein gelation. LWT - Food Science and Technology, 2013, 54, 336-345.	5.2	19
1074	Creation of reduced fat foods: Influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions. Food Chemistry, 2013, 141, 3393-3401.	8.2	35
1075	Optimization of lipid nanoparticle formation for beverage applications: Influence of oil type, cosolvents, and cosurfactants on nanoemulsion properties. Journal of Food Engineering, 2013, 118, 198-204.	5.2	45
1076	Impact of lipid nanoparticle physical state on particle aggregation and \hat{l}^2 -carotene degradation: Potential limitations of solid lipid nanoparticles. Food Research International, 2013, 52, 342-349.	6.2	134
1077	Influence of freezing rate variation on the microstructure and physicochemical properties of food emulsions. Journal of Food Engineering, 2013, 119, 244-253.	5.2	39
1078	Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of Colloid and Interface Science, 2013, 411, 105-113.	9.4	102
1079	Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 2013, 54, 812-820.	6.2	89
1080	Controlled biopolymer phase separation in complex food matrices containing fat droplets, starch granules, and hydrocolloids. Food Research International, 2013, 54, 829-836.	6.2	11

#	Article	IF	Citations
1081	Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents. International Journal of Biological Macromolecules, 2013, 62, 652-656.	7. 5	31
1082	Elucidation of structural difference in theaflavins for modulation of starch digestion. Journal of Functional Foods, 2013, 5, 2024-2029.	3.4	45
1083	Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydrate Polymers, 2013, 92, 1633-1640.	10.2	59
1084	Microstructure & Description of the description of	5.2	16
1085	Vitamin E and Vitamin E acetate solubilization in mixed micelles: Physicochemical basis of bioaccessibility. Journal of Colloid and Interface Science, 2013, 405, 312-321.	9.4	28
1086	Identification of novel bioactive metabolites of 5-demethylnobiletin in mice. Molecular Nutrition and Food Research, 2013, 57, 1999-2007.	3.3	63
1087	Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods. Expert Opinion on Drug Delivery, 2013, 10, 1621-1632.	5.0	60
1088	Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. Journal of Agricultural and Food Chemistry, 2013, 61, 8906-8913.	5.2	160
1089	Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocolloids, 2013, 30, 589-596.	10.7	310
1090	Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids, 2013, 30, 712-720.	10.7	141
1091	Hydrogel microspheres for encapsulation of lipophilic components: Optimization of fabrication & Early performance. Food Hydrocolloids, 2013, 31, 15-25.	10.7	57
1092	Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science and Technology, 2013, 34, 109-123.	15.1	286
1093	Structuring of lipid phases using controlled heteroaggregation of protein microspheres in water-in-oil emulsions. Journal of Food Engineering, 2013, 115, 314-321.	5.2	17
1094	Monitoring the Chemical Production of Citrus-Derived Bioactive 5-Demethylnobiletin Using Surface-Enhanced Raman Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 8079-8083.	5.2	12
1095	Nutraceutical nanoemulsions: influence of carrier oil composition (digestible <i>versus</i>) Tj ETQq1 1 0.784314 is 2013, 93, 3175-3183.	rgBT /Over 3.5	rlock 10 Tf 5 105
1096	Influence of free fatty acids on oxidative stability in waterâ€inâ€walnut oil emulsions. European Journal of Lipid Science and Technology, 2013, 115, 1013-1020.	1.5	21
1097	Controlling W/O/W multiple emulsion microstructure by osmotic swelling and internal protein gelation. Food Research International, 2013, 54, 1613-1620.	6.2	31
1098	Effect of microwave irradiation on composition, structure and properties of rice (Oryza sativa L.) with different milling degrees. Journal of Cereal Science, 2013, 58, 228-233.	3.7	41

#	Article	IF	Citations
1099	Textural properties of model food sauces: Correlation between simulated mastication and sensory evaluation methods. Food Research International, 2013, 51, 310-320.	6.2	27
1100	Designing reduced-fat food emulsions: Locust bean gum–fat droplet interactions. Food Hydrocolloids, 2013, 32, 263-270.	10.7	49
1101	Modulating \hat{l}^2 -carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 2013, 139, 878-884.	8.2	197
1102	Design of Foods with Bioactive Lipids for Improved Health. Annual Review of Food Science and Technology, 2013, 4, 35-56.	9.9	91
1103	Influence of particle size on lipid digestion and \hat{l}^2 -carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 2013, 141, 1472-1480.	8.2	489
1104	The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 2013, 140, 289-295.	8.2	47
1105	Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer Self-Assembly Alginate–Chitosan-Coated Nanoliposomes. Journal of Agricultural and Food Chemistry, 2013, 61, 4133-4144.	5.2	149
1106	A surface enhanced Raman spectroscopic study of interactions between casein and polymethoxyflavones. Journal of Raman Spectroscopy, 2013, 44, 531-535.	2.5	16
1107	Encapsulation and release of hydrophobic bioactive components in nanoemulsion-based delivery systems: impact of physical form on quercetin bioaccessibility. Food and Function, 2013, 4, 162-174.	4.6	168
1108	Edible lipid nanoparticles: Digestion, absorption, and potential toxicity. Progress in Lipid Research, 2013, 52, 409-423.	11.6	177
1109	Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: Factors influencing droplet size and stability. Journal of Colloid and Interface Science, 2013, 402, 122-130.	9.4	148
1110	Interfacial Engineering Using Mixed Protein Systems: Emulsion-Based Delivery Systems for Encapsulation and Stabilization of \hat{I}^2 -Carotene. Journal of Agricultural and Food Chemistry, 2013, 61, 5163-5169.	5.2	51
1111	Modification of emulsion properties by heteroaggregation of oppositely charged starch-coated and protein-coated fat droplets. Food Hydrocolloids, 2013, 33, 320-326.	10.7	42
1112	Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science, 2013, 391, 95-102.	9.4	362
1113	Modulation of physicochemical properties of emulsified lipids by chitosan addition. Journal of Food Engineering, 2013, 114, 1-7.	5.2	21
1114	Structuring lipids by aggregation of acidic protein microspheres in W/O emulsions. LWT - Food Science and Technology, 2013, 51, 16-22.	5.2	13
1115	Structural characterisation of partially glycosylated whey protein as influenced by pH and heat using surface-enhanced Raman spectroscopy. Food Chemistry, 2013, 139, 313-319.	8.2	40
1116	Characterization of emulsions prepared by egg yolk phosvitin with pectin, glycerol and trehalose. Food Hydrocolloids, 2013, 30, 123-129.	10.7	33

#	Article	IF	CITATIONS
1117	Physicochemical characteristics of mixed colloidal dispersions: Models for foods containing fat and starch. Food Hydrocolloids, 2013, 30, 281-291.	10.7	30
1118	Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization. International Journal of Molecular Sciences, 2013, 14, 19763-19773.	4.1	60
1119	Enhanced lymphatic transport of bioactive lipids: cell culture study of polymethoxyflavone incorporation into chylomicrons. Food and Function, 2013, 4, 1662.	4.6	26
1120	5â€ <scp>D</scp> emethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing <scp>G</scp> 2/M cell cycle arrest and apoptosis. Molecular Nutrition and Food Research, 2013, 57, 2103-2111.	3.3	61
1121	Modulation of food texture using controlled heteroaggregation of lipid droplets: Principles and applications. Journal of Applied Polymer Science, 2013, 130, 3833-3841.	2.6	18
1122	Oxidation in Different Food Matrices. , 2013, , 129-154.		5
1123	Fabrication, characterization and properties of food nanoemulsions. , 2012, , 293-316.		6
1124	Requirements for food ingredient and nutraceutical delivery systems. , 2012, , 3-18.		22
1125	Edible delivery systems for nutraceuticals: designing functional foods for improved health. Therapeutic Delivery, 2012, 3, 801-803.	2.2	26
1126	Nanoemulsion delivery systems: Influence of carrier oil on \hat{l}^2 -carotene bioaccessibility. Food Chemistry, 2012, 135, 1440-1447.	8.2	472
1127	Physical Properties and Antimicrobial Efficacy of Thyme Oil Nanoemulsions: Influence of Ripening Inhibitors. Journal of Agricultural and Food Chemistry, 2012, 60, 12056-12063.	5.2	196
1128	Utilization of interfacial engineering to produce novel emulsion properties: Pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers. Food Research International, 2012, 49, 46-52.	6.2	20
1129	Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid and Interface Science, 2012, 17, 235-245.	7.4	366
1130	Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 2012, 8, 1719-1729.	2.7	1,237
1131	Innovative technologies in the control of lipid oxidation. Lipid Technology, 2012, 24, 275-277.	0.3	25
1132	Novel strategies for fabricating reduced fat foods: Heteroaggregation of lipid droplets with polysaccharides. Food Research International, 2012, 48, 337-345.	6.2	41
1133	Formation of semi-solid lipid phases by aggregation of protein microspheres in water-in-oil emulsions. Food Research International, 2012, 48, 544-550.	6.2	21
1134	Antioxidant effects of mono- and diacylglycerols in non-stripped and stripped soybean oil-in-water emulsions. Food Research International, 2012, 48, 353-358.	6.2	30

#	Article	IF	CITATIONS
1135	Rheology and microstructure of bimodal particulate dispersions: Model for foods containing fat droplets and starch granules. Food Research International, 2012, 48, 641-649.	6.2	40
1136	Instrumental mastication assay for texture assessment of semi-solid foods: Combined cyclic squeezing flow and shear viscometry. Food Research International, 2012, 49, 161-169.	6.2	28
1137	New Insights into the Role of Iron in the Promotion of Lipid Oxidation in Bulk Oils Containing Reverse Micelles. Journal of Agricultural and Food Chemistry, 2012, 60, 3524-3532.	5.2	72
1138	Synergistic Anti-inflammatory Effects of Nobiletin and Sulforaphane in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 2157-2164.	5.2	71
1139	Interactions between α-Tocopherol and Rosmarinic Acid and Its Alkyl Esters in Emulsions: Synergistic, Additive, or Antagonistic Effect?. Journal of Agricultural and Food Chemistry, 2012, 60, 10320-10330.	5.2	53
1140	Effect of stabilization of rice bran by domestic heating on mechanical extraction yield, quality, and antioxidant properties of cold-pressed rice bran oil (Oryza saltiva L.). LWT - Food Science and Technology, 2012, 48, 231-236.	5.2	104
1141	Inhibition of \hat{l}^2 -carotene degradation in oil-in-water nanoemulsions: Influence of oil-soluble and water-soluble antioxidants. Food Chemistry, 2012, 135, 1036-1043.	8.2	139
1142	Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin–glucose Maillard reaction products. Food Research International, 2012, 46, 55-61.	6.2	54
1143	Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Research International, 2012, 46, 209-216.	6.2	50
1144	Cationic Antimicrobial (ε-Polylysine)–Anionic Polysaccharide (Pectin) Interactions: Influence of Polymer Charge on Physical Stability and Antimicrobial Efficacy. Journal of Agricultural and Food Chemistry, 2012, 60, 1837-1844.	5. 2	48
1145	Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, 2012, 388, 95-102.	9.4	303
1146	Reactivity of a lipophilic ingredient solubilized in anionic or cationic surfactant micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412, 135-142.	4.7	14
1147	Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food and Function, 2012, 3, 202-220.	4.6	265
1148	Modulation of lipid digestibility using structured emulsion-based delivery systems: Comparison of in vivo and in vitro measurements. Food and Function, 2012, 3, 528.	4.6	46
1149	Impact of dietary fiber coatings on behavior of protein-stabilized lipid droplets under simulated gastrointestinal conditions. Food and Function, 2012, 3, 58-66.	4.6	53
1150	Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions. Food and Function, 2012, 3, 1025.	4.6	81
1151	Polymeric Nanoparticles as Oral Delivery Systems for Encapsulation and Release of Polyphenolic Compounds: Impact on Quercetin Antioxidant Activity & Bioaccessibility. Food Biophysics, 2012, 7, 276-288.	3.0	44
1152	Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility. Food Biophysics, 2012, 7, 341-353.	3.0	38

#	Article	IF	CITATIONS
1153	Prooxidant Activity of Polar Lipid Oxidation Products in Bulk Oil and Oilâ€inâ€Water Emulsion. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 2187-2194.	1.9	16
1154	An Investigation of the Versatile Antioxidant Mechanisms of Action of Rosmarinate Alkyl Esters in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2012, 60, 2692-2700.	5.2	120
1155	Impact of Encapsulation Within Hydrogel Microspheres on Lipid Digestion: An In Vitro Study. Food Biophysics, 2012, 7, 145-154.	3.0	47
1156	Inhibition of Ostwald Ripening in Model Beverage Emulsions by Addition of Poorly Water Soluble Triglyceride Oils. Journal of Food Science, 2012, 77, C33-8.	3.1	85
1157	Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Advances in Colloid and Interface Science, 2012, 174, 1-30.	14.7	268
1158	Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chemistry, 2012, 131, 1340-1346.	8.2	52
1159	Inhibition of lipid oxidation by encapsulation of emulsion droplets within hydrogel microspheres. Food Chemistry, 2012, 132, 766-772.	8.2	89
1160	Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry, 2012, 132, 799-807.	8.2	462
1161	Physical and chemical stability of \hat{l}^2 -carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 2012, 132, 1221-1229.	8.2	433
1162	Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans. Food Chemistry, 2012, 132, 1514-1520.	8.2	67
1163	Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chemistry, 2012, 134, 749-757.	8.2	100
1164	Fabrication of viscous and paste-like materials by controlled heteroaggregation of oppositely charged lipid droplets. Food Chemistry, 2012, 134, 872-879.	8.2	22
1165	Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chemistry, 2012, 134, 1106-1112.	8.2	129
1166	Controlling lipid digestibility: Response of lipid droplets coated by β-lactoglobulin-dextran Maillard conjugates to simulated gastrointestinal conditions. Food Hydrocolloids, 2012, 26, 221-230.	10.7	110
1167	Lemon oil solubilization in mixed surfactant solutions: Rationalizing microemulsion & amp; nanoemulsion formation. Food Hydrocolloids, 2012, 26, 268-276.	10.7	134
1168	Fabrication of functional micro-clusters by heteroaggregation of oppositely charged protein-coated lipid droplets. Food Hydrocolloids, 2012, 27, 80-90.	10.7	46
1169	Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocolloids, 2012, 27, 517-528.	10.7	161
1170	Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocolloids, 2012, 27, 355-363.	10.7	110

#	Article	IF	CITATIONS
1171	Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids, 2012, 28, 121-129.	10.7	186
1172	Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocolloids, 2012, 29, 326-334.	10.7	163
1173	Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids, 2012, 29, 398-406.	10.7	158
1174	Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: Influence of particle size and emulsifier content. Journal of Colloid and Interface Science, 2012, 380, 60-66.	9.4	34
1175	Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. Journal of Colloid and Interface Science, 2012, 382, 110-116.	9.4	57
1176	Fabrication of Reduced Fat Products by Controlled Heteroaggregation of Oppositely Charged Lipid Droplets. Journal of Food Science, 2012, 77, E144-52.	3.1	25
1177	Solid Lipid Nanoparticles: Effect of Carrier Oil and Emulsifier Type on Phase Behavior and Physical Stability. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 17-28.	1.9	29
1178	Factors Influencing the Formation and Stability of Filled Hydrogel Particles Fabricated by Protein/Polysaccharide Phase Separation and Enzymatic Cross-Linking. Food Biophysics, 2012, 7, 72-83.	3.0	30
1179	Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. , 2012, , .		30
1180	Controlling lipid nanoemulsion digestion using nanolaminated biopolymer coatings. Journal of Microencapsulation, 2011, 28, 166-175.	2.8	34
1181	Predicting the Effect of the Homogenization Pressure on Emulsion Drop-Size Distributions. Industrial & Lamp; Engineering Chemistry Research, 2011, 50, 6089-6100.	3.7	35
1182	Chemical and Antioxidant Properties of Casein Peptide and Its Glucose Maillard Reaction Products in Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2011, 59, 13311-13317.	5.2	51
1183	Colloidal Stability of Magnetic Iron Oxide Nanoparticles: Influence of Natural Organic Matter and Synthetic Polyelectrolytes. Langmuir, 2011, 27, 8036-8043.	3.5	92
1184	Formation and Stabilization of Antimicrobial Delivery Systems Based on Electrostatic Complexes of Cationicâ^'Non-ionic Mixed Micelles and Anionic Polysaccharides. Journal of Agricultural and Food Chemistry, 2011, 59, 1041-1049.	5.2	57
1185	Physicochemical Properties and Antimicrobial Efficacy of Electrostatic Complexes Based on Cationic $\hat{\mu}$ -Polylysine and Anionic Pectin. Journal of Agricultural and Food Chemistry, 2011, 59, 6776-6782.	5.2	50
1186	Influence of Surfactant Charge on Antimicrobial Efficacy of Surfactant-Stabilized Thyme Oil Nanoemulsions. Journal of Agricultural and Food Chemistry, 2011, 59, 6247-6255.	5.2	208
1187	Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. Journal of Agricultural and Food Chemistry, 2011, 59, 5026-5035.	5.2	203
1188	Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 2011, 7, 2297-2316.	2.7	822

#	Article	IF	CITATIONS
1189	Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics. Soft Matter, 2011, 7, 6167.	2.7	91
1190	Interactions of a Cationic Antimicrobial (Î μ -Polylysine) with an Anionic Biopolymer (Pectin): An Isothermal Titration Calorimetry, Microelectrophoresis, and Turbidity Study. Journal of Agricultural and Food Chemistry, 2011, 59, 5579-5588.	5.2	59
1191	Antioxidant Properties of Chlorogenic Acid and Its Alkyl Esters in Stripped Corn Oil in Combination with Phospholipids and/or Water. Journal of Agricultural and Food Chemistry, 2011, 59, 10361-10366.	5.2	58
1192	Inhibitory Effects of Resveratrol and Pterostilbene on Human Colon Cancer Cells: A Side-by-Side Comparison. Journal of Agricultural and Food Chemistry, 2011, 59, 10964-10970.	5.2	76
1193	A single DNA aptamer functions as a biosensor for ricin. Analyst, The, 2011, 136, 3884.	3.5	56
1194	Protein-Stabilized Nanoemulsions and Emulsions: Comparison of Physicochemical Stability, Lipid Oxidation, and Lipase Digestibility. Journal of Agricultural and Food Chemistry, 2011, 59, 415-427.	5.2	149
1195	Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: Influence of pH and lyso-lecithin addition. Food Research International, 2011, 44, 3006-3012.	6.2	40
1196	Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 423-431.	4.3	77
1197	Mechanisms of lipid oxidation in food dispersions. Trends in Food Science and Technology, 2011, 22, 3-13.	15.1	490
1198	Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 2011, 51, 285-330.	10.3	1,237
1199	Role of reverse micelles on lipid oxidation in bulk oils: impact of phospholipids on antioxidant activity of \hat{l}_{\pm} -tocopherol and Trolox. Food and Function, 2011, 2, 302.	4.6	73
1200	Detection of a Foreign Protein in Milk Using Surface-Enhanced Raman Spectroscopy Coupled with Antibody-Modified Silver Dendrites. Analytical Chemistry, 2011, 83, 1510-1513.	6.5	83
1201	Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein–polysaccharide complexes. Advances in Colloid and Interface Science, 2011, 167, 49-62.	14.7	273
1202	Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oilâ€inâ€Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. Journal of Food Science, 2011, 76, E165-72.	3.1	171
1203	Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids, 2011, 25, 122-130.	10.7	164
1204	Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: Effects of pH, salt and heating. Food Hydrocolloids, 2011, 25, 976-982.	10.7	95
1205	Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids, 2011, 25, 1000-1008.	10.7	717
1206	Controlling lipid digestion by encapsulation of protein-stabilized lipid droplets within alginate–chitosan complex coacervates. Food Hydrocolloids, 2011, 25, 1025-1033.	10.7	95

#	Article	IF	CITATIONS
1207	Modulation of physicochemical properties of lipid droplets using \hat{l}^2 -lactoglobulin and/or lactoferrin interfacial coatings. Food Hydrocolloids, 2011, 25, 1181-1189.	10.7	61
1208	Modulation of bulk physicochemical properties of emulsions by hetero-aggregation of oppositely charged protein-coated lipid droplets. Food Hydrocolloids, 2011, 25, 1201-1209.	10.7	62
1209	Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, 2011, 25, 1227-1232.	10.7	111
1210	Formation of protein nanoparticles by controlled heat treatment of lactoferrin: Factors affecting particle characteristics. Food Hydrocolloids, 2011, 25, 1354-1360.	10.7	104
1211	Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & Lamp; lemon oil. Food Hydrocolloids, 2011, 25, 1413-1423.	10.7	212
1212	Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids, 2011, 25, 1865-1880.	10.7	443
1213	Minor Components in Food Oils: A Critical Review of their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Critical Reviews in Food Science and Nutrition, 2011, 51, 901-916.	10.3	166
1214	Influence of maltodextrin addition on the freeze-dry stability of \hat{I}^2 -lactoglobulin-based emulsions with controlled electrostatic and/or steric interactions. Food Science and Biotechnology, 2011, 20, 1143-1150.	2.6	8
1215	Impact of Layer Structure on Physical Stability and Lipase Digestibility of Lipid Droplets Coated by Biopolymer Nanolaminated Coatings. Food Biophysics, 2011, 6, 37-48.	3.0	57
1216	Comparison of Biopolymer Emulsifier Performance in Formation and Stabilization of Orange Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 47-55.	1.9	93
1217	Antioxidant and Prooxidant Activity Behavior of Phospholipids in Stripped Soybean Oilâ€inâ€Water Emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1409-1416.	1.9	53
1218	Preparation of Uniform-Sized Multiple Emulsions and Micro/Nano Particulates for Drug Delivery by Membrane Emulsification. Journal of Pharmaceutical Sciences, 2011, 100, 75-93.	3.3	72
1219	Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethaneâ€treated mice. Molecular Nutrition and Food Research, 2011, 55, 278-290.	3.3	45
1220	The p53â€, Bax†and p21†dependent inhibition of colon cancer cell growth by 5†hydroxy polymethoxyflavones. Molecular Nutrition and Food Research, 2011, 55, 613-622.	3.3	53
1221	The inhibitory effects of 5â€hydroxyâ€3,6,7,8,3′,4′â€hexamethoxyflavone on human colon cancer cells. Molecular Nutrition and Food Research, 2011, 55, 1523-1532.	3.3	31
1222	Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry, 2011, 126, 498-505.	8.2	280
1223	Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chemistry, 2011, 126, 506-513.	8.2	100
1224	Impact of salt and lipid type on in vitro digestion of emulsified lipids. Food Chemistry, 2011, 126, 1559-1564.	8.2	46

#	Article	IF	CITATIONS
1225	Stabilization of orange oil-in-water emulsions: A new role for ester gum as an Ostwald ripening inhibitor. Food Chemistry, 2011, 128, 1023-1028.	8.2	63
1226	In vitro human digestion models for food applications. Food Chemistry, 2011, 125, 1-12.	8.2	727
1227	Comments on the Letter to the Editor. Food Chemistry, 2011, 128, 822.	8.2	O
1228	Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food Chemistry, 2011, 129, 854-859.	8.2	106
1229	Manipulating interactions between functional colloidal particles and polyethylene surfaces using interfacial engineering. Journal of Colloid and Interface Science, 2011, 360, 31-38.	9.4	29
1230	Quantitative analysis of hydroxylated polymethoxyflavones by highâ€performance liquid chromatography. Biomedical Chromatography, 2010, 24, 838-845.	1.7	14
1231	Influence of maltodextrin type and multi-layer formation on the freeze-thaw stability of model beverage emulsions stabilized with \hat{I}^2 -lactoglobulin. Food Science and Biotechnology, 2010, 19, 7-17.	2.6	17
1232	Impact of Lipase, Bile Salts, and Polysaccharides on Properties and Digestibility of Tuna Oil Multilayer Emulsions Stabilized by Lecithin–Chitosan. Food Biophysics, 2010, 5, 73-81.	3.0	66
1233	Thermal analysis of \hat{l}^2 -lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 2010, 24, 239-248.	10.7	118
1234	Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 2010, 24, 374-383.	10.7	189
1235	Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 2010, 24, 560-569.	10.7	130
1236	Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 2010, 24, 719-725.	10.7	158
1237	Fabrication and characterization of filled hydrogel particles based on sequential segregative and aggregative biopolymer phase separation. Food Hydrocolloids, 2010, 24, 689-701.	10.7	72
1238	Functional Biopolymer Particles: Design, Fabrication, and Applications. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 374-397.	11.7	234
1239	Oxidative stability of <i>Echium plantagineum</i> seed oil bodies. European Journal of Lipid Science and Technology, 2010, 112, 741-749.	1.5	61
1240	Nanofibers as carrier systems for antimicrobial microemulsions. II. Release characteristics and antimicrobial activity. Journal of Applied Polymer Science, 2010, 118, 2859-2868.	2.6	26
1241	Inhibitory effects of 5â€hydroxy polymethoxyflavones on colon cancer cells. Molecular Nutrition and Food Research, 2010, 54, S244-52.	3.3	104
1242	Comparison of protein–polysaccharide nanoparticle fabrication methods: Impact of biopolymer complexation before or after particle formation. Journal of Colloid and Interface Science, 2010, 344, 21-29.	9.4	99

#	Article	IF	CITATIONS
1243	Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection. Journal of Chromatography A, 2010, 1217, 642-647.	3.7	40
1244	Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science, 2010, 159, 213-228.	14.7	723
1245	Prediction of emulsion drop size distributions with population balance equation models of multiple drop breakage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 96-108.	4.7	46
1246	Modification of interfacial characteristics of monodisperse droplets produced using membrane emulsification by surfactant displacement and/or polyelectrolyte electrostatic deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 123-131.	4.7	18
1247	Potential interaction between β-cyclodextrin and amylose–lipid complex in retrograded rice starch. Carbohydrate Polymers, 2010, 80, 581-584.	10.2	30
1248	Inhibition of citral degradation in model beverage emulsions using micelles and reverse micelles. Food Chemistry, 2010, 122, 111-116.	8.2	65
1249	Impact of surface deposition of lactoferrin on physical and chemical stability of omega-3 rich lipid droplets stabilised by caseinate. Food Chemistry, 2010, 123, 99-106.	8.2	57
1250	Design of Nanoâ€Laminated Coatings to Control Bioavailability of Lipophilic Food Components. Journal of Food Science, 2010, 75, R30-42.	3.1	186
1251	Biopolymer Nanoparticles from Heatâ€Treated Electrostatic Protein–Polysaccharide Complexes: Factors Affecting Particle Characteristics. Journal of Food Science, 2010, 75, N36-43.	3.1	80
1252	Influence of Droplet Charge on the Chemical Stability of Citral in Oilâ€inâ€Water Emulsions. Journal of Food Science, 2010, 75, C536-40.	3.1	36
1253	Lipid oxidation in emulsified food products. , 2010, , 306-343.		10
1254	Review of in vitro digestion models for rapid screening of emulsion-based systems. Food and Function, 2010, 1, 32.	4.6	383
1255	New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 2010, 58, 8085-8092.	5.2	327
1256	Formation of Protein-Rich Coatings around Lipid Droplets Using the Electrostatic Deposition Method. Langmuir, 2010, 26, 7937-7945.	3.5	17
1257	Influence of Tripolyphosphate Cross-Linking on the Physical Stability and Lipase Digestibility of Chitosan-Coated Lipid Droplets. Journal of Agricultural and Food Chemistry, 2010, 58, 1283-1289.	5.2	47
1258	Physical Structures in Soybean Oil and Their Impact on Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2010, 58, 11993-11999.	5.2	80
1259	Controlling the functional performance of emulsion-based delivery systems using multi-component biopolymer coatings. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 38-47.	4.3	101
1260	Factors Influencing the Chemical Stability of Carotenoids in Foods. Critical Reviews in Food Science and Nutrition, 2010, 50, 515-532.	10.3	614

#	Article	IF	CITATIONS
1261	Citral Stability in Oil-in-Water Emulsions with Solid or Liquid Octadecane. Journal of Agricultural and Food Chemistry, 2010, 58, 533-536.	5.2	47
1262	Emulsion Design to Improve the Delivery of Functional Lipophilic Components. Annual Review of Food Science and Technology, 2010, 1, 241-269.	9.9	425
1263	Fabrication and Morphological Characterization of Biopolymer Particles Formed by Electrostatic Complexation of Heat Treated Lactoferrin and Anionic Polysaccharides. Langmuir, 2010, 26, 9827-9834.	3. 5	105
1264	Stabilization of Soybean Oil Bodies by Enzyme (Laccase) Cross-Linking of Adsorbed Beet Pectin Coatings. Journal of Agricultural and Food Chemistry, 2010, 58, 9259-9265.	5.2	53
1265	Interaction of a Food-Grade Cationic Surfactant (Lauric Arginate) with Food-Grade Biopolymers (Pectin, Carrageenan, Xanthan, Alginate, Dextran, and Chitosan). Journal of Agricultural and Food Chemistry, 2010, 58, 9770-9777.	5.2	99
1266	Impact of Electrostatic Deposition of Anionic Polysaccharides on the Stability of Oil Droplets Coated by Lactoferrin. Journal of Agricultural and Food Chemistry, 2010, 58, 9825-9832.	5.2	68
1267	Oxidative Stability and in Vitro Digestibility of Fish Oil-in-Water Emulsions Containing Multilayered Membranes. Journal of Agricultural and Food Chemistry, 2010, 58, 8093-8099.	5 . 2	106
1268	Impact of Interfacial Composition on Physical Stability and In Vitro Lipase Digestibility of Triacylglycerol Oil Droplets Coated with Lactoferrin and/or Caseinate. Journal of Agricultural and Food Chemistry, 2010, 58, 7962-7969.	5 . 2	55
1269	Role of Continuous Phase Anionic Polysaccharides on the Oxidative Stability of Menhaden Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2010, 58, 3779-3784.	5 . 2	96
1270	Effects of Chitosan and Rosmarinate Esters on the Physical and Oxidative Stability of Liposomes. Journal of Agricultural and Food Chemistry, 2010, 58, 5679-5684.	5 . 2	110
1271	Stabilization of Phase Inversion Temperature Nanoemulsions by Surfactant Displacement. Journal of Agricultural and Food Chemistry, 2010, 58, 7059-7066.	5 . 2	170
1272	Oxidation in foods and beverages and antioxidant applications. , 2010, , .		16
1273	Hydroxylated polymethoxyflavones induce p53 and Bax dependent apoptosis and cell cycle arrest FASEB Journal, 2010, 24, lb484.	0.5	0
1274	Influence of glycerol and sorbitol on thermally induced droplet aggregation in oil-in-water emulsions stabilized by Î ² -lactoglobulin. Food Hydrocolloids, 2009, 23, 253-261.	10.7	15
1275	Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloids, 2009, 23, 1312-1321.	10.7	146
1276	Influence of molecular character of chitosan on the adsorption of chitosan to oil droplet interfaces in an in vitro digestion model. Food Hydrocolloids, 2009, 23, 2243-2253.	10.7	39
1277	Impact of cosolvents on formation and properties of biopolymer nanoparticles formed by heat treatment of β-lactoglobulin–Pectin complexes. Food Hydrocolloids, 2009, 23, 2450-2457.	10.7	56
1278	Monodemethylated polymethoxyflavones from sweet orange (<i>Citrus sinensis</i>) peel Inhibit growth of human lung cancer cells by apoptosis. Molecular Nutrition and Food Research, 2009, 53, 398-406.	3.3	141

#	Article	IF	CITATIONS
1279	Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer, 2009, 50, 189-200.	3.8	207
1280	Influence of Surfactant Type and Concentration on Electrospinning of Chitosan–Poly(Ethylene Oxide) Blend Nanofibers. Food Biophysics, 2009, 4, 213-228.	3.0	90
1281	Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. Food Chemistry, 2009, 114, 253-262.	8.2	256
1282	Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). Journal of Colloid and Interface Science, 2009, 334, 75-81.	9.4	276
1283	Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chemistry, 2009, 114, 1308-1315.	8.2	99
1284	Impact of iron encapsulation within the interior aqueous phase of water-in-oil-in-water emulsions on lipid oxidation. Food Chemistry, 2009, 116, 271-276.	8.2	74
1285	Emulsion-Based Delivery Systems for Tributyrin, a Potential Colon Cancer Preventative Agent. Journal of Agricultural and Food Chemistry, 2009, 57, 9243-9249.	5.2	104
1286	Effect of Omega-3 Fatty Acids on Crystallization, Polymorphic Transformation and Stability of Tripalmitin Solid Lipid Nanoparticle Suspensions. Crystal Growth and Design, 2009, 9, 3405-3411.	3.0	45
1287	Structure–function relationships to guide rational design and fabrication of particulate food delivery systems. Trends in Food Science and Technology, 2009, 20, 448-457.	15.1	143
1288	Relationships between Free Radical Scavenging and Antioxidant Activity in Foods. Journal of Agricultural and Food Chemistry, 2009, 57, 2969-2976.	5.2	235
1289	Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Critical Reviews in Food Science and Nutrition, 2009, 49, 577-606.	10.3	788
1290	Impact of Surfactant Properties on Oxidative Stability of \hat{l}^2 -Carotene Encapsulated within Solid Lipid Nanoparticles. Journal of Agricultural and Food Chemistry, 2009, 57, 8033-8040.	5.2	199
1291	Theoretical Stability Maps for Guiding Preparation of Emulsions Stabilized by Proteinâ^'Polysaccharide Interfacial Complexes. Langmuir, 2009, 25, 6649-6657.	3.5	78
1292	Structural Design Principles for Improved Food Performance: Nanolaminated Biopolymer Structures in Foods. ACS Symposium Series, 2009, , 3-34.	0.5	12
1293	Prooxidant Mechanisms of Free Fatty Acids in Stripped Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2009, 57, 7112-7117.	5.2	92
1294	Analysis of the Interactions of a Cationic Surfactant (Lauric Arginate) with an Anionic Biopolymer (Pectin): Isothermal Titration Calorimetry, Light Scattering, and Microelectrophoresis. Langmuir, 2009, 25, 116-122.	3.5	99
1295	Role of Iron and Hydroperoxides in the Degradation of Lycopene in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2009, 57, 2993-2998.	5.2	106
1296	Biopolymers in Food Emulsions. , 2009, , 129-166.		37

#	Article	IF	CITATIONS
1297	Stability of Citral in Oil-in-Water Emulsions Prepared with Medium-Chain Triacylglycerols and Triacetin. Journal of Agricultural and Food Chemistry, 2009, 57, 11349-11353.	5.2	67
1298	Nanostructured Encapsulation Systems. , 2009, , 425-479.		92
1299	Competitive Adsorption of Mixed Anionic Polysaccharides at the Surfaces of Protein-Coated Lipid Droplets. Langmuir, 2009, 25, 2654-2660.	3.5	27
1300	Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir, 2009, 25, 1154-1161.	3.5	78
1301	Controlling lipid bioavailability using emulsion-based delivery systems. , 2009, , 502-546.		10
1302	Role of hydrocolloids as emulsifiers in foods. Special Publication - Royal Society of Chemistry, 2009, , 379-393.	0.0	4
1303	Formulation and Characterization of Phytophenol-Carrying Antimicrobial Microemulsions. Food Biophysics, 2008, 3, 54-65.	3.0	72
1304	Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions. Food Biophysics, 2008, 3, 155-162.	3.0	60
1305	Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophysics, 2008, 3, 146-154.	3.0	386
1306	Stability of Biopolymer Particles Formed by Heat Treatment of \hat{l}^2 -lactoglobulin/Beet Pectin Electrostatic Complexes. Food Biophysics, 2008, 3, 191-197.	3.0	63
1307	Designing Food Structure to Control Stability, Digestion, Release and Absorption of Lipophilic Food Components. Food Biophysics, 2008, 3, 219-228.	3.0	179
1308	Delivery of Functionality in Complex Food Systems: Physically Inspired Approaches from Nanoscale to Microscale. Food Biophysics, 2008, 3, 111-112.	3.0	4
1309	Molecular Gastronomy: A Food Fad or an Interface for Science-based Cooking?. Food Biophysics, 2008, 3, 246-254.	3.0	40
1310	Influence of Polymorphic Transformations on Gelation of Tripalmitin Solid Lipid Nanoparticle Suspensions. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 501-511.	1.9	96
1311	Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. International Journal of Cancer, 2008, 122, 2115-2124.	5.1	86
1312	Utilization of polysaccharide coatings to improve freeze–thaw and freeze–dry stability of protein-coated lipid droplets. Journal of Food Engineering, 2008, 86, 508-518.	5.2	69
1313	Stability of citral in protein- and gum arabic-stabilized oil-in-water emulsions. Food Chemistry, 2008, 106, 698-705.	8.2	73
1314	Impact of cosolvents (polyols) on globular protein functionality: Ultrasonic velocity, density, surface tension and solubility study. Food Hydrocolloids, 2008, 22, 1475-1484.	10.7	55

#	Article	IF	CITATIONS
1315	Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl- \hat{l}^2 -cyclodextrin. Food Chemistry, 2008, 109, 264-268.	8.2	143
1316	Bio-mimetic approach to improving emulsion stability: Cross-linking adsorbed beet pectin layers using laccase. Food Hydrocolloids, 2008, 22, 1203-1211.	10.7	90
1317	Combination regimen with statins and NSAIDs: A promising strategy for cancer chemoprevention. International Journal of Cancer, 2008, 123, 983-990.	5.1	83
1318	Chemical and Physical Stability of Protein and Gum Arabicâ€Stabilized Oilâ€inâ€Water Emulsions Containing Limonene. Journal of Food Science, 2008, 73, C167-72.	3.1	39
1319	Formation of Biopolymerâ€Coated Liposomes by Electrostatic Deposition of Chitosan. Journal of Food Science, 2008, 73, N7-15.	3.1	155
1320	Coreâ€Shell Biopolymer Nanoparticles Produced by Electrostatic Deposition of Beet Pectin onto Heatâ€Denatured βâ€Lactoglobulin Aggregates. Journal of Food Science, 2008, 73, N23-30.	3.1	94
1321	Effect of Interfacial Protein Cross-Linking on the in Vitro Digestibility of Emulsified Corn Oil by Pancreatic Lipase. Journal of Agricultural and Food Chemistry, 2008, 56, 7488-7494.	5.2	79
1322	Influence of Lipid Physical State on the in Vitro Digestibility of Emulsified Lipids. Journal of Agricultural and Food Chemistry, 2008, 56, 3791-3797.	5.2	141
1323	Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Critical Reviews in Food Science and Nutrition, 2008, 48, 775-797.	10.3	286
1324	Factors Affecting Lycopene Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2008, 56, 1408-1414.	5.2	125
1325	Adsorption of protein-coated lipid droplets onto gellan gum hydrogel surfaces. Food Research International, 2008, 41, 237-246.	6.2	5
1326	Controlling Lipid Bioavailability through Physicochemical and Structural Approaches. Critical Reviews in Food Science and Nutrition, 2008, 49, 48-67.	10.3	365
1327	Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Critical Reviews in Food Science and Nutrition, 2008, 48, 496-511.	10.3	327
1328	Impact of Surface-Active Compounds on Physicochemical and Oxidative Properties of Edible Oil. Journal of Agricultural and Food Chemistry, 2008, 56, 550-556.	5.2	51
1329	Physical and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized with \hat{l}^2 -Lactoglobulin and Pectin. Journal of Agricultural and Food Chemistry, 2008, 56, 5926-5931.	5.2	92
1330	Temperature Scanning Ultrasonic Velocity Study of Complex Thermal Transformations in Solid Lipid Nanoparticles. Langmuir, 2008, 24, 12779-12784.	3.5	11
1331	Stabilization of Soybean Oil Bodies Using Protective Pectin Coatings Formed by Electrostatic Deposition. Journal of Agricultural and Food Chemistry, 2008, 56, 2240-2245.	5.2	71
1332	Understanding Colors in Emulsions. ACS Symposium Series, 2008, , 364-387.	0.5	8

#	Article	IF	CITATIONS
1333	Examination of the Interaction of Chitosan and Oil-in-Water Emulsions Under Conditions Simulating the Digestive System Using Confocal Microscopy. Journal of Aquatic Food Product Technology, 2008, 17, 216-233.	1.4	22
1334	Emulsion droplet interfacial engineering to deliver bioactive lipids into functional foods. , 2008, , $184-206$.		2
1335	Lipid-Based Emulsions and Emulsifiers. Food Additives, 2008, , .	0.1	4
1336	Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Research International, 2007, 40, 770-781.	6.2	372
1337	Physicochemical basis for cosolvent modulation of \hat{l}^2 -lactoglobulin functionality: Interfacial tension study. Food Research International, 2007, 40, 1098-1105.	6.2	16
1338	Inhibition of droplet flocculation in globular-protein stabilized oil-in-water emulsions by polyols. Food Research International, 2007, 40, 1161-1169.	6.2	12
1339	Spray-Dried Multilayered Emulsions as a Delivery Method for i‰-3 Fatty acids into Food Systems. Journal of Agricultural and Food Chemistry, 2007, 55, 3112-3119.	5.2	124
1340	Impact of Electrostatic Interactions on Formation and Stability of Emulsions Containing Oil Droplets Coated by Î ² -Lactoglobulinâ^'Pectin Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 475-485.	5.2	236
1341	Extraction and Characterization of Oil Bodies from Soy Beans: A Natural Source of Pre-Emulsified Soybean Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 8711-8716.	5.2	169
1342	Properties of Low-Moisture Viscoplastic Materials Consisting of Oil Droplets Dispersed in a Protein–Carbohydrate–Glycerol Matrix: Effect of Oil Concentration. Journal of Agricultural and Food Chemistry, 2007, 55, 9289-9295.	5.2	1
1343	Chemical and Physical Stability of Citral and Limonene in Sodium Dodecyl Sulfateâ^'Chitosan and Gum Arabic-Stabilized Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2007, 55, 3585-3591.	5.2	121
1344	In Situ Electroacoustic Monitoring of Polyelectrolyte Adsorption onto Protein-Coated Oil Droplets. Langmuir, 2007, 23, 3932-3936.	3.5	8
1345	Role of Physical Structures in Bulk Oils on Lipid Oxidation. Critical Reviews in Food Science and Nutrition, 2007, 47, 299-317.	10.3	414
1346	Preparation and Characterization of Water/Oil and Water/Oil/Water Emulsions Containing Biopolymer-Gelled Water Droplets. Journal of Agricultural and Food Chemistry, 2007, 55, 175-184.	5.2	150
1347	Adsorption of Protein-Coated Lipid Droplets to Mixed Biopolymer Hydrogel Surfaces:  Role of Biopolymer Diffusion. Langmuir, 2007, 23, 13059-13065.	3.5	6
1348	Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis, 2007, 29, 113-119.	2.8	113
1349	Formation of Hydrogel Particles by Thermal Treatment of β-Lactoglobulinâ 'Chitosan Complexes. Journal of Agricultural and Food Chemistry, 2007, 55, 5653-5660.	5.2	72
1350	Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Critical Reviews in Food Science and Nutrition, 2007, 47, 611-649.	10.3	802

#	Article	IF	CITATIONS
1351	Formation of high-molecular-weight protein adducts by methyl docosahexaenoate peroxidation products. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 258-266.	2.3	8
1352	Modulation of thermal stability and heat-induced gelation of \hat{l}^2 -lactoglobulin by high glycerol and sorbitol levels. Food Chemistry, 2007, 103, 512-520.	8.2	44
1353	Effect of cross-linking and esterification on hygroscopicity and surface activity of cassava maltodextrins. Food Chemistry, 2007, 103, 1375-1379.	8.2	11
1354	Influence of encapsulation of emulsified lipids with chitosan on their in vivo digestibility. Food Chemistry, 2007, 104, 761-767.	8.2	64
1355	Impact of thermal processing on the antioxidant mechanisms of continuous phase \hat{l}^2 -lactoglobulin in oil-in-water emulsions. Food Chemistry, 2007, 104, 1402-1409.	8.2	54
1356	The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers. Polymer, 2007, 48, 448-457.	3.8	102
1357	Application of multi-component biopolymer layers to improve the freeze–thaw stability of oil-in-water emulsions: β-Lactoglobulin–ι-carrageenan–gelatin. Journal of Food Engineering, 2007, 80, 1246-1254.	5.2	91
1358	Emulsionâ€Based Delivery Systems for Lipophilic Bioactive Components. Journal of Food Science, 2007, 72, R109-24.	3.1	829
1359	Improvement of Stability of Oilâ€inâ€Water Emulsions Containing Caseinateâ€Coated Droplets by Addition of Sodium Alginate. Journal of Food Science, 2007, 72, E518-24.	3.1	60
1360	Formation of colloidosomes by adsorption of small charged oil droplets onto the surface of large oppositely charged oil droplets. Food Hydrocolloids, 2007, 21, 516-526.	10.7	39
1361	Modulation of pH Sensitivity of Surface Charge and Aggregation Stability of Protein-Coated Lipid Droplets by Chitosan Addition. Food Biophysics, 2007, 2, 46-55.	3.0	49
1362	Impact of Surface Active Compounds on Iron Catalyzed Oxidation of Methyl Linolenate in AOT–Water–Hexadecane Systems. Food Biophysics, 2007, 2, 57-66.	3.0	15
1363	Understanding and controlling the microstructure of complex foods., 2007,,.		19
1364	Physicochemical and structural aspects of lipid digestion., 2007,, 483-503.		10
1365	Role of Proteins in Oil-in-Water Emulsions on the Stability of Lipid Hydroperoxides. Journal of Agricultural and Food Chemistry, 2006, 54, 7879-7884.	5.2	60
1366	Influence of Interfacial Characteristics on Ostwald Ripening in Hydrocarbon Oil-in-Water Emulsions. Langmuir, 2006, 22, 1551-1554.	3.5	85
1367	Antioxidant Mechanisms of Enzymatic Hydrolysates of β-Lactoglobulin in Food Lipid Dispersions. Journal of Agricultural and Food Chemistry, 2006, 54, 9565-9572.	5.2	111
1368	Stabilization of Model Beverage Cloud Emulsions Using Proteinâ 'Polysaccharide Electrostatic Complexes Formed at the Oilâ 'Water Interface. Journal of Agricultural and Food Chemistry, 2006, 54, 5540-5547.	5.2	117

#	Article	IF	CITATIONS
1369	Effect of Emulsifier Type on Droplet Disruption in Repeated Shirasu Porous Glass Membrane Homogenization. Langmuir, 2006, 22, 4526-4533.	3.5	75
1370	Influence of pH and Ionic Strength on Formation and Stability of Emulsions Containing Oil Droplets Coated by Î ² -Lactoglobulinâ ⁻ 'Alginate Interfaces. Biomacromolecules, 2006, 7, 2052-2058.	5 . 4	82
1371	Irreversible Thermal Denaturation of \hat{l}^2 -Lactoglobulin Retards Adsorption of Carrageenan onto \hat{l}^2 -Lactoglobulin-Coated Droplets. Langmuir, 2006, 22, 7480-7486.	3 . 5	13
1372	Properties of Low Moisture Composite Materials Consisting of Oil Droplets Dispersed in a Proteinâ^'Carbohydrateâ^'Glycerol Matrix:Â Effect of Continuous Phase Composition. Journal of Agricultural and Food Chemistry, 2006, 54, 417-424.	5.2	4
1373	Impact of Fat and Water Crystallization on the Stability of Hydrogenated Palm Oil-in-Water Emulsions Stabilized by a Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 2006, 54, 3591-3597.	5.2	37
1374	Lipid Oxidation in a Menhaden Oil-in-Water Emulsion Stabilized by Sodium Caseinate Cross-Linked with Transglutaminase. Journal of Agricultural and Food Chemistry, 2006, 54, 10222-10227.	5.2	74
1375	Comparison of properties of oil-in-water emulsions stabilized by coconut cream proteins with those stabilized by whey protein isolate. Food Research International, 2006, 39, 78-86.	6.2	56
1376	Influence of EDTA and citrate on thermal stability of whey protein stabilized oil-in-water emulsions containing calcium chloride. Food Research International, 2006, 39, 230-239.	6.2	42
1377	Thermo-mechanical properties of egg albumen–cassava starch composite films containing sunflower-oil droplets as influenced by moisture content. Food Research International, 2006, 39, 277-284.	6.2	26
1378	Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Research International, 2006, 39, 449-457.	6.2	177
1379	Ability of conventional and nutritionally-modified whey protein concentrates to stabilize oil-in-water emulsions. Food Research International, 2006, 39, 761-771.	6.2	43
1380	Utilization of layer-by-layer interfacial deposition technique to improve freeze–thaw stability of oil-in-water emulsions. Food Research International, 2006, 39, 721-729.	6.2	88
1381	Functional Materials in Food Nanotechnology. Journal of Food Science, 2006, 71, R107-R116.	3.1	894
1382	The effect of binary cosolvent systems (glycerol-sucrose mixtures) on the heat-induced gelation mechanism of bovine serum albumin. International Journal of Food Science and Technology, 2006, 41, 189-199.	2.7	8
1383	Influence of alginate, pH and ultrasound treatment on palm oil-in-water emulsions stabilized by Î ² -lactoglobulin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287, 59-67.	4.7	71
1384	Influence of heat processing and calcium ions on the ability of EDTA to inhibit lipid oxidation in oil-in-water emulsions containing omega-3 fatty acids. Food Chemistry, 2006, 95, 585-590.	8.2	89
1385	Effect of molecular weight and degree of deacetylation of chitosan on the formation of oil-in-water emulsions stabilized by surfactant–chitosan membranes. Journal of Colloid and Interface Science, 2006, 296, 581-590.	9.4	89
1386	Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science, 2006, 128-130, 227-248.	14.7	729

#	Article	IF	CITATIONS
1387	Influence of Interfacial Composition on in Vitro Digestibility of Emulsified Lipids: Potential Mechanism for Chitosan's Ability to Inhibit Fat Digestion. Food Biophysics, 2006, 1, 21-29.	3.0	223
1388	Influence of Environmental Stresses on O/W Emulsions Stabilized by \hat{l}^2 -Lactoglobulin \hat{a} Pectin and \hat{l}^2 -Lactoglobulin \hat{a} Pectin \hat{a} Chitosan Membranes Produced by the Electrostatic Layer-by-Layer Deposition Technique. Food Biophysics, 2006, 1, 30-40.	3.0	142
1389	Isothermal titration calorimetry study of the influence of temperature, pH and salt on maltodextrin–anionic surfactant interactions. Food Hydrocolloids, 2006, 20, 461-467.	10.7	18
1390	Characterization of \hat{l}^2 -lactoglobulina \in "chitosan interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 2006, 20, 124-131.	10.7	132
1391	Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 2006, 20, 577-585.	10.7	291
1392	Properties and stability of oil-in-water emulsions stabilized by fish gelatin. Food Hydrocolloids, 2006, 20, 596-606.	10.7	198
1393	Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocolloids, 2006, 20, 586-595.	10.7	7 5
1394	Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids, 2006, 20, 607-618.	10.7	248
1395	Preliminary study of the influence of dietary fiber on the properties of oil-in-water emulsions passing through an in vitro human digestion model. Food Hydrocolloids, 2006, 20, 800-809.	10.7	134
1396	Non-covalent interactions between proteins and polysaccharides. Biotechnology Advances, 2006, 24, 621-625.	11.7	309
1397	Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. Journal of Controlled Release, 2006, 110, 296-306.	9.9	289
1398	Emulsion Technologies to Produce Oxidative Stable Emulsions Containing n-3 Fatty Acids., 2005,,.		0
1399	Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by β-lactoglobulin–ι-carrageenan membranes. Journal of Colloid and Interface Science, 2005, 286, 551-558.	9.4	90
1400	Influence of pH and carrageenan type on properties of \hat{l}^2 -lactoglobulin stabilized oil-in-water emulsions. Food Hydrocolloids, 2005, 19, 83-91.	10.7	193
1401	Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocolloids, 2005, 19, 209-220.	10.7	234
1402	Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
1403	Encapsulation of emulsified tuna oil in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Hydrocolloids, 2005, 19, 1044-1053.	10.7	116
1404	Influence of Cosolvent Systems on the Gelation Mechanism of Globular Protein: Thermodynamic, Kinetic, and Structural Aspects of Globular Protein Gelation. Comprehensive Reviews in Food Science and Food Safety, 2005, 4, 43-54.	11.7	50

#	Article	IF	CITATIONS
1405	Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion. Journal of Dairy Research, 2005, 72, 311-316.	1.4	84
1406	Stability of Spray-Dried Tuna Oil Emulsions Encapsulated with Two-Layered Interfacial Membranes. Journal of Agricultural and Food Chemistry, 2005, 53, 8365-8371.	5.2	139
1407	Theoretical Analysis of Factors Affecting the Formation and Stability of Multilayered Colloidal Dispersions. Langmuir, 2005, 21, 9777-9785.	3 . 5	206
1408	Antioxidant Activity of Cysteine, Tryptophan, and Methionine Residues in Continuous Phase β-Lactoglobulin in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2005, 53, 10248-10253.	5. 2	212
1409	Influence of Environmental Stresses on Stability of O/W Emulsions Containing Cationic Droplets Stabilized by SDSâ´´Fish Gelatin Membranes. Journal of Agricultural and Food Chemistry, 2005, 53, 4236-4244.	5.2	68
1410	Production and Characterization of Oil-in-Water Emulsions Containing Droplets Stabilized by Multilayer Membranes Consisting of \hat{l}^2 -Lactoglobulin, \hat{l}^1 -Carrageenan and Gelatin. Langmuir, 2005, 21, 5752-5760.	3 . 5	139
1411	Influence of Protein Concentration and Order of Addition on Thermal Stability of β-Lactoglobulin Stabilizedn-Hexadecane Oil-in-Water Emulsions at Neutral pH. Langmuir, 2005, 21, 134-139.	3 . 5	64
1412	The Relationship between the Physicochemical Properties of Antioxidants and Their Ability to Inhibit Lipid Oxidation in Bulk Oil and Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2005, 53, 4982-4988.	5.2	96
1413	Properties and Stability of Oil-in-Water Emulsions Stabilized by Coconut Skim Milk Proteins. Journal of Agricultural and Food Chemistry, 2005, 53, 5747-5753.	5.2	64
1414	Impact of Lipid Physical State on the Oxidation of Methyl Linolenate in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2005, 53, 9624-9628.	5. 2	45
1415	Influence of Droplet Characteristics on the Formation of Oil-in-Water Emulsions Stabilized by Surfactantâ''Chitosan Layers. Langmuir, 2005, 21, 6228-6234.	3 . 5	134
1416	Influence of pH, Ionic Strength, and Temperature on Self-Association and Interactions of Sodium Dodecyl Sulfate in the Absence and Presence of Chitosan. Langmuir, 2005, 21, 79-86.	3 . 5	138
1417	Increasing the Oxidative Stability of Liquid and Dried Tuna Oil-in-Water Emulsions with Electrostatic Layer-by-Layer Deposition Technology. Journal of Agricultural and Food Chemistry, 2005, 53, 4561-4566.	5. 2	151
1418	Crystallization in Simple Paraffins and Monoacid Saturated Triacylglycerols Dispersed in Water. , 2005, , 243-249.		0
1419	Functional fish protein isolates prepared using low ionic strength, acid solubilization /precipitation. Developments in Food Science, 2004, 42, 407-414.	0.0	4
1420	Impact of glycerol on thermostability and heat-induced gelation of bovine serum albumin. Food Hydrocolloids, 2004, 18, 91-100.	10.7	47
1421	Factors influencing the production of o/w emulsions stabilized by β-lactoglobulin–pectin membranes. Food Hydrocolloids, 2004, 18, 967-975.	10.7	201
1422	Influence of emulsifier type on freeze-thaw stability of hydrogenated palm oil-in-water emulsions. Food Hydrocolloids, 2004, 18, 1033-1043.	10.7	142

#	Article	IF	CITATIONS
1423	Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 355-360.	1.9	117
1424	Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by whey protein isolate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 49-59.	4.7	98
1425	Impact of chelators on the oxidative stability of whey protein isolate-stabilized oil-in-water emulsions containing ω-3 fatty acids. Food Chemistry, 2004, 88, 57-62.	8.2	61
1426	Protein-stabilized emulsions. Current Opinion in Colloid and Interface Science, 2004, 9, 305-313.	7.4	834
1427	Two-dimensional rotating-frame Overhauser spectroscopy (ROESY) and 13C NMR study of the interactions between maltodextrin and an anionic surfactant. Carbohydrate Research, 2004, 339, 1105-1111.	2.3	13
1428	Stabilization of Oil-in-Water Emulsions by Cod Protein Extracts. Journal of Agricultural and Food Chemistry, 2004, 52, 3996-4001.	5.2	46
1429	Comparison of Droplet Flocculation in Hexadecane Oil-in-Water Emulsions Stabilized by Î ² -Lactoglobulin at pH 3 and 7. Langmuir, 2004, 20, 5753-5758.	3.5	19
1430	Influence of Î ¹ -Carrageenan on Droplet Flocculation of Î ² -Lactoglobulin-Stabilized Oil-in-Water Emulsions during Thermal Processing. Langmuir, 2004, 20, 9565-9570.	3.5	33
1431	Influence of pH and \hat{l}^1 -Carrageenan Concentration on Physicochemical Properties and Stability of \hat{l}^2 -Lactoglobulin-Stabilized Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2004, 52, 3626-3632.	5. 2	156
1432	Antioxidant Activity of a Proanthocyanidin-Rich Extract from Grape Seed in Whey Protein Isolate Stabilized Algae Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2004, 52, 5272-5276.	5.2	59
1433	Effect of Surfactant Type on Surfactantâ 'Maltodextrin Interactions: Âlsothermal Titration Calorimetry, Surface Tensiometry, and Ultrasonic Velocimetry Study. Langmuir, 2004, 20, 3913-3919.	3.5	50
1434	Influence of Free Protein on Flocculation Stability of \hat{l}^2 -Lactoglobulin Stabilized Oil-in-Water Emulsions at Neutral pH and Ambient Temperature. Langmuir, 2004, 20, 10394-10398.	3 . 5	27
1435	Incorporation and Stabilization of Omegaâ^3 Fatty Acids in Surimi Made from Cod, Gadus morhua. Journal of Agricultural and Food Chemistry, 2004, 52, 597-601.	5.2	54
1436	Role of Continuous Phase Protein on the Oxidative Stability of Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2004, 52, 4558-4564.	5 . 2	216
1437	Production and Characterization of O/W Emulsions Containing Droplets Stabilized by Lecithinâ^'Chitosanâ^'Pectin Mutilayered Membranes. Journal of Agricultural and Food Chemistry, 2004, 52, 3595-3600.	5.2	173
1438	Characterization of Interactions between Chitosan and an Anionic Surfactant. Journal of Agricultural and Food Chemistry, 2004, 52, 987-991.	5.2	113
1439	Solid fat content determination by ultrasonic velocimetry. Food Research International, 2004, 37, 545-555.	6.2	47
1440	Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Research International, 2004, 37, 851-859.	6.2	158

#	Article	IF	CITATIONS
1441	Physical Stability of Whey Proteinâ€stabilized Oilâ€inâ€water Emulsions at pH 3: Potential ωâ€3 Fatty Acid Delivery Systems (Part A). Journal of Food Science, 2004, 69, C351.	3.1	44
1442	Oxidative Stability of Whey Proteinâ€stabilized Oilâ€inâ€water Emulsions at pH 3: Potential ωâ€3 Fatty Acid Delivery Systems (Part B). Journal of Food Science, 2004, 69, C356.	3.1	104
1443	Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocolloids, 2003, 17, 73-85.	10.7	219
1444	Influence of sodium dodecyl sulfate on the thermal stability of bovine serum albumin stabilized oil-in-water emulsions. Food Hydrocolloids, 2003, 17, 87-93.	10.7	30
1445	Ability of Chelators to Alter the Physical Location and Prooxidant Activity of Iron in Oil-in-Water Emulsions. Journal of Food Science, 2003, 68, 1952-1957.	3.1	39
1446	Effect of Different Dextrose Equivalent of Maltodextrin on the Interactions with Anionic Surfactant in an Isothermal Titration Calorimetry Study. Journal of Agricultural and Food Chemistry, 2003, 51, 7810-7814.	5.2	22
1447	Influence of Environmental Conditions on the Stability of Oil in Water Emulsions Containing Droplets Stabilized by Lecithinâ°'Chitosan Membranes. Journal of Agricultural and Food Chemistry, 2003, 51, 5522-5527.	5.2	213
1448	Use of Caseinophosphopeptides as Natural Antioxidants in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2003, 51, 2365-2370.	5.2	168
1449	Evidence that Homogenization of BSA-Stabilized Hexadecane-in-Water Emulsions Induces Structure Modification of the Nonadsorbed Protein. Journal of Agricultural and Food Chemistry, 2003, 51, 5900-5905.	5.2	38
1450	Front-Face Fluorescence Spectroscopy Study of Globular Proteins in Emulsions:Â Influence of Droplet Flocculation. Journal of Agricultural and Food Chemistry, 2003, 51, 2490-2495.	5.2	20
1451	Combined Influence of NaCl and Sucrose on Heat-Induced Gelation of Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 2003, 51, 8107-8112.	5.2	23
1452	Influence of Sucrose on Droplet Flocculation in Hexadecane Oil-in-Water Emulsions Stabilized by Î ² -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2003, 51, 766-772.	5.2	24
1453	Front-Face Fluorescence Spectroscopy Study of Globular Proteins in Emulsions:Â Displacement of BSA by a Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 2003, 51, 2482-2489.	5.2	45
1454	Consistency and Solubility Changes in Herring (Clupea harengus) Light Muscle Homogenates as a Function of pH. Journal of Agricultural and Food Chemistry, 2003, 51, 3992-3998.	5.2	33
1455	Impact of sorbitol on the thermostability and heat-induced gelation of bovine serum albumin. Food Research International, 2003, 36, 1081-1087.	6.2	35
1456	Adsorption kinetics of BSA at air–sugar solution interfaces as affected by sugar type and concentration. Food Research International, 2003, 36, 649-660.	6.2	55
1457	Impact of Whey Protein Emulsifiers on the Oxidative Stability of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2003, 51, 1435-1439.	5.2	191
1458	Production and Characterization of Oil-in-Water Emulsions Containing Droplets Stabilized by β-Lactoglobulinâ°'Pectin Membranes. Journal of Agricultural and Food Chemistry, 2003, 51, 6612-6617.	5.2	162

#	Article	lF	CITATIONS
1459	Lipid Oxidation in Corn Oil-in-Water Emulsions Stabilized by Casein, Whey Protein Isolate, and Soy Protein Isolate. Journal of Agricultural and Food Chemistry, 2003, 51, 1696-1700.	5.2	405
1460	Production and Characterization of O/W Emulsions Containing Cationic Droplets Stabilized by Lecithinâ^'Chitosan Membranes. Journal of Agricultural and Food Chemistry, 2003, 51, 2806-2812.	5.2	206
1461	The rheology of emulsion-based food products. , 2003, , 3-35.		3
1462	Factors Influencing Free Radical Generation in Food Emulsions. ACS Symposium Series, 2002, , 83-97.	0.5	2
1463	Ability of Surfactant Micelles To Alter the Physical Location and Reactivity of Iron in Oil-in-Water Emulsion. Journal of Agricultural and Food Chemistry, 2002, 50, 5704-5710.	5.2	45
1464	Ability of Lipid Hydroperoxides To Partition into Surfactant Micelles and Alter Lipid Oxidation Rates in Emulsions. Journal of Agricultural and Food Chemistry, 2002, 50, 5445-5449.	5. 2	121
1465	Ability of Surfactant Micelles to Alter the Partitioning of Phenolic Antioxidants in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2002, 50, 1254-1259.	5.2	102
1466	Physicochemical Properties of Mono disperse Oil-in-Water Emulsions. Journal of Dispersion Science and Technology, 2002, 23, 125-134.	2.4	10
1467	Role of Postadsorption Conformation Changes of \hat{l}^2 -Lactoglobulin on Its Ability To Stabilize Oil Droplets against Flocculation during Heating at Neutral pH. Langmuir, 2002, 18, 7577-7583.	3 . 5	148
1468	Modulation of Globular Protein Functionality by Weakly Interacting Cosolvents. Critical Reviews in Food Science and Nutrition, 2002, 42, 417-471.	10.3	128
1469	Impact of Protein Surface Denaturation on Droplet Flocculation in Hexadecane Oil-in-Water Emulsions Stabilized by β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2002, 50, 7131-7137.	5 . 2	111
1470	Influence of EDTA and Citrate on Physicochemical Properties of Whey Protein-Stabilized Oil-in-Water Emulsions Containing CaCl2. Journal of Agricultural and Food Chemistry, 2002, 50, 7145-7153.	5 . 2	132
1471	Influence of glycerol on optical properties and large-strain rheology of heat-induced whey protein isolate gels. Food Hydrocolloids, 2002, 16, 461-466.	10.7	36
1472	Influence of NaCl on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels. Food Hydrocolloids, 2002, 16, 467-476.	10.7	88
1473	Influence of Oil Polarity on Droplet Growth in Oil-in-Water Emulsions Stabilized by a Weakly Adsorbing Biopolymer or a Nonionic Surfactant. Journal of Colloid and Interface Science, 2002, 247, 167-176.	9.4	90
1474	Comparison of ultrasonic and pulsed NMR techniques for determination of solid fat content. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 431-437.	1.9	22
1475	Colloidal basis of emulsion color. Current Opinion in Colloid and Interface Science, 2002, 7, 451-455.	7.4	173
1476	Physical Stability of Spray-Dried Milk Fat Emulsion as Affected by Emulsifiers and Processing Conditions. Journal of Food Science, 2002, 67, 2183-2189.	3.1	94

#	Article	IF	CITATIONS
1477	Effect of CaCl2 and KCl on Physiochemical Properties of Model Nutritional Beverages Based on Whey Protein Stabilized Oil-in-Water Emulsions. Journal of Food Science, 2002, 67, 665-671.	3.1	72
1478	Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers: Influence of pH, CaCl2 and Temperature. Journal of Food Science, 2002, 67, 120-125.	3.1	220
1479	Theoretical prediction of emulsion color. Advances in Colloid and Interface Science, 2002, 97, 63-89.	14.7	237
1480	Physicochemical Properties of Monodisperse Oil-in-Water Emulsions. Journal of Dispersion Science and Technology, 2002, 23, 125-134.	2.4	3
1481	Impact of Preferential Interactions on Thermal Stability and Gelation of Bovine Serum Albumin in Aqueous Sucrose Solutions. Journal of Agricultural and Food Chemistry, 2001, 49, 2600-2608.	5.2	101
1482	Ultrasonic characterization of Atlantic mackerel (Scomber scombrus). Food Research International, 2001, 34, 15-23.	6.2	20
1483	Influence of relative refractive index on optical properties of emulsions. Food Research International, 2001, 34, 827-835.	6.2	43
1484	Maltodextrinâ^'Anionic Surfactant Interactions:Â Isothermal Titration Calorimetry and Surface Tension Study. Journal of Agricultural and Food Chemistry, 2001, 49, 5039-5045.	5.2	41
1485	Color Changes in Hydrocarbon Oil-in-Water Emulsions Caused by Ostwald Ripening. Journal of Agricultural and Food Chemistry, 2001, 49, 4372-4377.	5. 2	20
1486	Impact of Tween 20 Hydroperoxides and Iron on the Oxidation of Methyl Linoleate and Salmon Oil Dispersions. Journal of Agricultural and Food Chemistry, 2001, 49, 4912-4916.	5.2	97
1487	Impact of Emulsifiers on the Oxidative Stability of Lipid Dispersions High in Omega-3 Fatty Acids. ACS Symposium Series, 2001, , 243-257.	0.5	1
1488	Ultrasonic Characterization of North Pacific Albacore (Thunnus alalunga). Journal of Aquatic Food Product Technology, 2001, 10, 5-20.	1.4	21
1489	Probing particle-particle interactions in flocculated oil-in-water emulsions using ultrasonic attenuation spectrometry. European Physical Journal E, 2001, 5, 183-188.	1.6	7
1490	Droplet size determination in food emulsions: comparison of ultrasonic and light scattering methods. Journal of Food Engineering, 2001, 50, 117-120.	5.2	66
1491	Isothermal titration calorimetry measurement of enthalpy changes in monodisperse oil-in-water emulsions undergoing depletion flocculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181, 261-269.	4.7	15
1492	Interaction between Emulsion Droplets and Escherichia coli Cells. Journal of Food Science, 2001, 66, 570-657.	3.1	30
1493	Depletion Flocculation of Beverage Emulsions by Gum Arabic and Modified Starch. Journal of Food Science, 2001, 66, 457-463.	3.1	147
1494	Influence of Flocculation on Optical Properties of Emulsions. Journal of Food Science, 2001, 66, 464-469.	3.1	41

#	Article	IF	CITATIONS
1495	Prediction of emulsion color from droplet characteristics: dilute monodisperse oil-in-water emulsions. Food Hydrocolloids, 2001, 15, 83-91.	10.7	62
1496	Estimation of steric exclusion and differential interaction contributions to protein transfer free energies in aqueous cosolvent solutions. Food Hydrocolloids, 2001, 15, 355-363.	10.7	30
1497	Ultrasonic Characterization of Food Emulsions. , 2001, , 233-242.		1
1498	Rapid Prediction of Atlantic Mackerel (Scomber scombrus) Composition Using a Hand-Held Ultrasonic Device. Journal of Aquatic Food Product Technology, 2000, 9, 27-38.	1.4	3
1499	Influence of sucrose on cold gelation of heat-denatured whey protein isolate. Journal of the Science of Food and Agriculture, 2000, 80, 1314-1318.	3.5	37
1500	Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions. Journal of Colloid and Interface Science, 2000, 225, 214-218.	9.4	97
1501	Dependence of creaming and rheology of monodisperse oil-in-water emulsions on droplet size and concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 172, 79-86.	4.7	188
1502	Influence of sodium dodecyl sulfate on the physicochemical properties of whey protein-stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 391-400.	4.7	51
1503	Optical properties of oil-in-water emulsions containing titanium dioxide particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166, 123-131.	4.7	12
1504	High frequency dynamic shear rheology of honey. Journal of Food Engineering, 2000, 45, 219-224.	5.2	49
1505	Characterization of aerated foods using ultrasonic reflectance spectroscopy. Journal of Food Engineering, 2000, 46, 235-241.	5.2	49
1506	Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. Journal of Food Science, 2000, 65, 1270-1282.	3.1	1,084
1507	Antioxidant Activity of Whey in a Salmon Oil Emulsion. Journal of Food Science, 2000, 65, 1325-1329.	3.1	103
1508	Influence of NaCl and CaCl2 on Cold-Set Gelation of Heat-denatured Whey Protein. Journal of Food Science, 2000, 65, 801-804.	3.1	135
1509	Optimizing Preparation Conditions for Heat-denatured Whey Protein Solutions to be Used as Cold-gelling Ingredients. Journal of Food Science, 2000, 65, 259-263.	3.1	50
1510	Ultrasonic Spectroscopy Study of Salad Dressings. Journal of Food Science, 2000, 65, 507-513.	3.1	5
1511	Influence of xanthan gum on physical characteristics of heat-denatured whey protein solutions and gels. Food Hydrocolloids, 2000, 14, 383-390.	10.7	120
1512	Comments on viscosity enhancement and depletion flocculation by polysaccharides. Food Hydrocolloids, 2000, 14, 173-177.	10.7	222

#	Article	IF	CITATIONS
1513	Influence of pH and CaCl2 on the stability of dilute whey protein stabilized emulsions. Food Research International, 2000, 33, 15-20.	6.2	113
1514	Rheology and stability of whey protein stabilized emulsions with high CaCl2 concentrations. Food Research International, 2000, 33, 21-25.	6.2	43
1515	Influence of sucrose on NaCl-induced gelation of heat denatured whey protein solutions. Food Research International, 2000, 33, 649-653.	6.2	37
1516	Isothermal Titration Calorimetry Study of Pectinâ^'lonic Surfactant Interactions. Journal of Agricultural and Food Chemistry, 2000, 48, 5604-5611.	5.2	38
1517	Impact of Weighting Agents and Sucrose on Gravitational Separation of Beverage Emulsions. Journal of Agricultural and Food Chemistry, 2000, 48, 5561-5565.	5.2	81
1518	Iron-Accelerated Cumene Hydroperoxide Decomposition in Hexadecane and Trilaurin Emulsions. Journal of Agricultural and Food Chemistry, 2000, 48, 213-219.	5.2	51
1519	Mechanisms of the Antioxidant Activity of a High Molecular Weight Fraction of Whey. Journal of Agricultural and Food Chemistry, 2000, 48, 1473-1478.	5.2	301
1520	Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles:Â Ostwald Ripening. Langmuir, 2000, 16, 6833-6838.	3.5	117
1521	Ability of Surfactant Headgroup Size To Alter Lipid and Antioxidant Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2000, 48, 2057-2061.	5.2	117
1522	Influence of Ostwald Ripening on Rheology of Oil-in-Water Emulsions Containing Electrostatically Stabilized Droplets. Langmuir, 2000, 16, 2145-2150.	3.5	70
1523	Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles:  Solubilization. Langmuir, 2000, 16, 5879-5883.	3.5	71
1524	Influence of Sucrose on the Thermal Denaturation, Gelation, and Emulsion Stabilization of Whey Proteins. Journal of Agricultural and Food Chemistry, 2000, 48, 1593-1597.	5.2	152
1525	Probing Floc Structure by Ultrasonic Spectroscopy, Viscometry, and Creaming Measurements. Langmuir, 2000, 16, 5884-5891.	3.5	22
1526	Ability of Surfactant Hydrophobic Tail Group Size To Alter Lipid Oxidation in Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2000, 48, 3077-3080.	5.2	65
1527	Influence of visco-inertial effects on the ultrasonic properties of monodisperse silica suspensions. Journal of the Acoustical Society of America, 1999, 106, 1178-1181.	1.1	7
1528	Ultrasonic attenuation spectroscopy study of flocculation in protein stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 45-54.	4.7	11
1529	Influence of droplet characteristics on the optical properties of colored oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 373-382.	4.7	79
1530	Monitoring Molecular Diffusion of Sucrose in Xanthan Solutions using Ultrasonic Velocity Measurements. Journal of Food Science, 1999, 64, 125-128.	3.1	21

#	Article	IF	CITATIONS
1531	Flocculation of Whey Protein Stabilized Emulsions as Influenced by Dextran Sulfate and Electrolyte. Journal of Food Science, 1999, 64, 206-210.	3.1	20
1532	Ability of Iron To Promote Surfactant Peroxide Decomposition and Oxidize \hat{l}_{\pm} -Tocopherol. Journal of Agricultural and Food Chemistry, 1999, 47, 4146-4149.	5.2	49
1533	Ultrasonic spectrometry study of the influence of temperature on whey protein aggregation. Food Hydrocolloids, 1999, 13, 439-444.	10.7	30
1534	Influence of copper on the stability of whey protein stabilized emulsions. Food Hydrocolloids, 1999, 13, 419-424.	10.7	27
1535	Theoretical and Experimental Study of Spectral Reflectance and Color of Concentrated Oil-in-Water Emulsions. Journal of Colloid and Interface Science, 1999, 218, 324-330.	9.4	46
1536	Nondestructive Monitoring of Sucrose Diffusion in Oil-in-Water Emulsions by Ultrasonic Velocity Profiling. Journal of Colloid and Interface Science, 1999, 220, 429-435.	9.4	7
1537	Ultrasonic spectroscopy study of relaxation and scattering in whey protein solutions. Journal of the Science of Food and Agriculture, 1999, 79, 1754-1760.	3.5	25
1538	Ostwald Ripening of Hydrocarbon Emulsion Droplets in Surfactant Solutions. Langmuir, 1999, 15, 6652-6657.	3.5	122
1539	Lipid Oxidation in Emulsions As Affected by Charge Status of Antioxidants and Emulsion Droplets. Journal of Agricultural and Food Chemistry, 1999, 47, 2267-2273.	5.2	132
1540	Incorporation of thermal overlap effects into multiple scattering theory. Journal of the Acoustical Society of America, 1999, 105, 915-918.	1.1	42
1541	Ultrasonic Determination of Chicken Composition. Journal of Agricultural and Food Chemistry, 1999, 47, 4686-4692.	5.2	35
1542	The Effects of Surfactant Type, pH, and Chelators on the Oxidation of Salmon Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1999, 47, 4112-4116.	5.2	193
1543	Ultrasonic Propagation in Highly Concentrated Oil-in-Water Emulsions. Langmuir, 1999, 15, 7937-7939.	3.5	6
1544	Ultrasonic Spectroscopy Study of Globule Aggregation in Parenteral Fat Emulsions Containing Calcium Chloride. Langmuir, 1999, 15, 1673-1678.	3.5	11
1545	Influence of Thermal Overlap Effects on the Ultrasonic Attenuation Spectra of Polydisperse Oil-in-Water Emulsions. Langmuir, 1999, 15, 3418-3423.	3.5	25
1546	Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chemistry, 1998, 61, 307-312.	8.2	238
1547	Ultrasonic Spectroscopy Study of Flocculation and Shear-Induced Floc Disruption in Oil-in-Water Emulsions. Journal of Colloid and Interface Science, 1998, 204, 268-276.	9.4	38
1548	Ultrasonic attenuation of edible oils. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1447-1448.	1.9	44

#	Article	IF	CITATIONS
1549	Ultrasonic imaging of gravitational separation in emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 169-181.	4.7	29
1550	Effect of temperature on the ultrasonic properties of oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 139, 241-250.	4.7	52
1551	Ultrasonic determination of fish composition. Journal of Food Engineering, 1998, 35, 323-337.	5.2	71
1552	Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in Food Science and Technology, 1998, 9, 143-151.	15.1	520
1553	Influence of Dextran Sulfate and NaCl on the Flocculation of Oil-in-Water Emulsions Stabilized by a Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 1998, 46, 3929-3935.	5.2	19
1554	Influence of pH and Heating on Physicochemical Properties of Whey Protein-Stabilized Emulsions Containing a Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 1998, 46, 3936-3942.	5.2	122
1555	Evidence of Iron Association with Emulsion Droplets and Its Impact on Lipid Oxidation. Journal of Agricultural and Food Chemistry, 1998, 46, 5072-5077.	5.2	181
1556	An Integrated Approach to the Development of Reduced-Fat Food Emulsions. Critical Reviews in Food Science and Nutrition, 1998, 38, 511-536.	10.3	110
1557	Influence of Droplet Size and Concentration on the Color of Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 1998, 46, 2914-2920.	5.2	96
1558	The influence of flocculation on the ultrasonic properties of emulsions: experiment. Journal Physics D: Applied Physics, 1998, 31, 2956-2963.	2.8	13
1559	Influence of flocculation on the ultrasonic properties of emulsions: theory. Journal Physics D: Applied Physics, 1998, 31, 2950-2955.	2.8	19
1560	Prediction of Food Emulsion Color Using Light Scattering Theory. Journal of Food Science, 1998, 63, 935-939.	3.1	35
1561	Prediction of Proximate Fish Composition from Ultrasonic Properties: Catfish, Cod, Flounder, Mackerel and Salmon. Journal of Food Science, 1998, 63, 966-968.	3.1	23
1562	Ironâ€Catalyzed Oxidation of Menhaden Oil as Affected by Emulsifiers. Journal of Food Science, 1998, 63, 997-1000.	3.1	126
1563	Disulfide-Mediated Polymerization of Whey Proteins in Whey Protein Isolate-Stabilized Emulsions. Advances in Experimental Medicine and Biology, 1997, 415, 127-136.	1.6	3
1564	Ultrasonic characterization of foods and drinks: Principles, methods, and applications. Critical Reviews in Food Science and Nutrition, 1997, 37, 1-46.	10.3	231
1565	Physical Properties of Whey Protein Stabilized Emulsions as Related to pH and NaCl. Journal of Food Science, 1997, 62, 342-347.	3.1	247
1566	Physicochemical Properties of Whey Protein-Stabilized Emulsions as affected by Heating and Ionic Strength. Journal of Food Science, 1997, 62, 462-467.	3.1	142

#	Article	IF	CITATIONS
1567	Use of Ultrasound to Determine Cod Fillet Composition. Journal of Food Science, 1997, 62, 500-504.	3.1	48
1568	Effect of conjugated linoleic acid on body composition in mice. Lipids, 1997, 32, 853-858.	1.7	1,020
1569	Physical properties of liquid edible oils. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1559-1564.	1.9	116
1570	Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 121, 53-60.	4.7	79
1571	Effect of Colloidal Interactions on the Rate of Interdroplet Heterogeneous Nucleation in Oil-in-Water Emulsions. Journal of Colloid and Interface Science, 1997, 186, 17-28.	9.4	34
1572	Effect of Ethanol on the Solubilization of Hydrocarbon Emulsion Droplets in Nonionic Surfactant Micelles. Journal of Colloid and Interface Science, 1997, 190, 71-75.	9.4	22
1573	Solubilization of Oil Droplets by Micellar Surfactant Solutions. Advances in Experimental Medicine and Biology, 1997, 415, 149-159.	1.6	0
1574	Principles of Ultrasonic Droplet Size Determination in Emulsions. Langmuir, 1996, 12, 3454-3461.	3.5	162
1575	Lipid oxidation in food emulsions. Trends in Food Science and Technology, 1996, 7, 83-91.	15.1	280
1576	Solubilization of Hydrocarbon Emulsion Droplets Suspended in Nonionic Surfactant Micelle Solutions. The Journal of Physical Chemistry, 1996, 100, 1066-1071.	2.9	70
1577	Droplet composition affects the rate of oxidation of emulsified ethyl linoleate. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 795-901.	1.9	42
1578	Droplet composition affects the rate of oxidation of emulsified ethyl linoleate-Supporting evidence. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1207-1207.	1.9	4
1579	Theory of droplet size distribution measurements in emulsions using ultrasonic spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117, 161-170.	4.7	74
1580	Solubilization Kinetics of Triacyl Glycerol and Hydrocarbon Emulsion Droplets in a Micellar Solution. Journal of Food Science, 1996, 61, 1114-1117.	3.1	27
1581	Disulfide-mediated Polymerization Reactions and Physical Properties of Heated WPI-stabilized Emulsions. Journal of Food Science, 1996, 61, 504-509.	3.1	119
1582	Advances in Food Colloids. , 1996, , .		79
1583	Molecular Basis of Protein Functionality. , 1996, , 27-80.		11
1584	Fat Crystallization in Oil-in-Water Emulsions. , 1996, , 211-246.		10

#	Article	IF	CITATIONS
1585	Surfactant Micelles in Food., 1996,, 247-279.		3
1586	Computer Simulation., 1996,, 102-144.		0
1587	Ultrasonic Characterization of Food Colloids. , 1996, , 176-210.		0
1588	Physical properties of cold-setting gels formed from heat-denatured whey protein isolate. Journal of the Science of Food and Agriculture, 1995, 69, 7-14.	3.5	88
1589	Light scattering study of solubilization of emulsion droplets by non-ionic surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104, 127-135.	4.7	52
1590	Ultrasonics in Food Processing. , 1995, , 59-70.		3
1591	Ultrasonic characterization of foods. , 1995, , 93-116.		1
1592	Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology, 1995, 6, 293-299.	15.1	468
1593	Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 90, 25-35.	4.7	115
1594	Interdroplet heterogeneous nucleation of supercooled liquid droplets by solid droplets in oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 1385-1389.	1.9	19
1595	Evidence of Oil Exchange between Oil-in-Water Emulsion Droplets Stabilized by Milk Proteins. Journal of Colloid and Interface Science, 1993, 156, 425-429.	9.4	12
1596	Effect of Emulsifier Type on the Crystallization Kinetics of Oil-in-Water Emulsions Containing a Mixture of Solid and Liquid Droplets. Journal of Colloid and Interface Science, 1993, 160, 293-297.	9.4	89
1597	Absorption and velocity dispersion due to crystallization and melting of emulsion droplets. Ultrasonics, 1993, 31, 433-437.	3.9	49
1598	Disulfide Bond Formation Affects Stability of Whey Protein Isolate Emulsions. Journal of Food Science, 1993, 58, 1036-1039.	3.1	114
1599	Droplet Size and Emulsifier Type Affect Crystallization and Melting of Hydrocarbon-in-Water Emulsions. Journal of Food Science, 1993, 58, 1148-1151.	3.1	111
1600	EFFECT OF EMULSION DROPLETS ON THE RHEOLOGY OF WHEY PROTEIN ISOLATE GELS. Journal of Texture Studies, 1993, 24, 411-422.	2.5	128
1601	Factors which affect oil exchange between oil-in-water emulsion droplets stabilized by whey protein isolate: Protein concentration, droplet size and ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 81, 203-210.	4.7	30
1602	Polymerization of whey proteins in whey protein-stabilized emulsions. Journal of Agricultural and Food Chemistry, 1993, 41, 1826-1829.	5.2	84

#	Article	IF	Citations
1603	Factors that affect the rate of oil exchange between oil-in-water emulsion droplets stabilized by a nonionic surfactant: droplet size, surfactant concentration, and ionic strength. The Journal of Physical Chemistry, 1993, 97, 7304-7308.	2.9	100
1604	Comparison of multiple scattering theories with experimental measurements in emulsions. Journal of the Acoustical Society of America, 1992, 91, 849-853.	1.1	99
1605	Frequency scanning ultrasonic pulse echo reflectometer. Ultrasonics, 1992, 30, 403-405.	3.9	67
1606	Neutron diffraction studies of liquid and crystalline trilaurin. JAOCS, Journal of the American Oil Chemists' Society, 1992, 69, 130-136.	1.9	72
1607	Ultrasonic analysis of edible fats and oils. Ultrasonics, 1992, 30, 383-388.	3.9	85
1608	Oil exchange between oil-in-water emulsion droplets stabilised with a non-ionic surfactant. Food Hydrocolloids, 1992, 6, 415-422.	10.7	41
1609	Ultrasonic investigation of aqueous solutions of a globular protein. Food Hydrocolloids, 1992, 6, 253-262.	10.7	39
1610	Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. International Journal of Food Science and Technology, 1992, 27, 515-529.	2.7	67
1611	Preliminary study of the influence of dextran on the precipitation of legumin from aqueous salt solutions. International Journal of Food Science and Technology, 1992, 27, 629-635.	2.7	6
1612	Ultrasonic pulse echo reflectometer. Ultrasonics, 1991, 29, 58-62.	3.9	111
1613	Ultrasonic characterisation of emulsions and suspensions. Advances in Colloid and Interface Science, 1991, 37, 33-72.	14.7	182
1614	Ultrasonic investigation of the particle size dependence of crystallization in n-hexadecane-in-water emulsions. Journal of Colloid and Interface Science, 1991, 142, 103-110.	9.4	79
1615	ULTRASONIC CHARACTERISATION OF AERATED FOODSTUFFS. , 1991, , 79-82.		1
1616	ULTRASONIC MONITORING OF MELTING/CRYSTALLIZATION IN EMULSIONS., 1991,, 107-110.		5
1617	Monitoring Crystallization in Simple and Mixed Oil-in-Water Emulsions using Ultrasonic Velocity Measurement., 1991,, 171-179.		7
1618	Small angle neutron scattering from voids in crystalline trilaurin. JAOCS, Journal of the American Oil Chemists' Society, 1990, 67, 76-78.	1.9	31
1619	Crystallization in hydrocarbon-in-water emulsions containing a mixture of solid and liquid droplets. Chemical Physics Letters, 1990, 172, 449-452.	2.6	53
1620	Ultrasonic characterization of a food emulsion. Ultrasonics, 1990, 28, 266-272.	3.9	55

#	Article	IF	Citations
1621	Comparison of effective medium and multipleâ€scattering theories of predicting the ultrasonic properties of dispersions. Journal of the Acoustical Society of America, 1990, 87, 2244-2246.	1.1	11
1622	Ultrasonic characterization of polystyrene dispersions. The Journal of Physical Chemistry, 1990, 94, 1711-1712.	2.9	5
1623	Faraday communications. Ultrasonic monitoring of crystallization in an oil-in-water emulsion. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1147.	1.7	37
1624	Scattering of ultrasound by emulsions. Journal Physics D: Applied Physics, 1989, 22, 38-47.	2.8	158
1625	Ultrasonics in food engineering. Part I: Introduction and experimental methods. Journal of Food Engineering, 1988, 8, 217-245.	5.2	128
1626	Ultrasonic velocity measurements in some liquid triglycerides and vegetable oils. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 1787-1790.	1.9	34
1627	Investigation of phase transitions in glyceride/paraffin oil mixtures using ultrasonic velocity measurements. JAOCS, Journal of the American Oil Chemists' Society, 1988, 65, 1791-1795.	1.9	22
1628	Comparison of pulsed NMR and ultrasonic velocity techniques for determining solid fat contents. International Journal of Food Science and Technology, 1988, 23, 159-170.	2.7	41
1629	Ultrasonic velocity as a probe of emulsions and suspensions. Advances in Colloid and Interface Science, 1987, 27, 285-316.	14.7	55
1630	Solid fat content determination using ultrasonic velocity measurements. International Journal of Food Science and Technology, 1987, 22, 491-499.	2.7	39
1631	Whey Protein-Stabilized Emulsions. , 0, , 63-97.		2
1632	Emulsion stability enhancement against environmental stresses using whey protein–tragacanthin complex: Comparison of layer-by-layer and mixing methods. International Journal of Food Properties, 0, , 1-12.	3.0	2
1633	Utilization of a layer-by-layer electrostatic deposition technique to improve food emulsion properties. Special Publication - Royal Society of Chemistry, 0, , 326-336.	0.0	5
1634	Food Emulsions., 0,,.		361
1635	Food Emulsions., 0, , .		525
1636	Mass Transport Phenomena in Emulsions Containing Surfactants. , 0, , 3966-3984.		0
1637	Impact of Various Physicochemical Factors on Stability of Curcumin in Oil-in-water Emulsions., 0,,.		0
1638	Enhanced Colon-Targeted Release of Propolis by pH-driven Encapsulation using Folic Acid Modified Carboxymethyl Chitosan. Food Biophysics, 0 , 1 .	3.0	0

#	Article	IF	CITATIONS
1639	Impact of Oil Phase Solubility on Droplet Ripening when Nanoemulsions are Mixed with Emulsions. Food Biophysics, 0, , .	3.0	0