
Leonie Verhage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/670879/publications.pdf Version: 2024-02-01

LEONIE VERHACE

#	Article	lF	CITATIONS
1	Isotope labeling to measure protein synthesis rates throughout the diurnal cycle – the technique explained. Plant Journal, 2022, 109, 743-744.	5.7	1
2	Can transposable elements rewire transcriptional networks in the developing rice endosperm?. Plant Journal, 2022, 109, 1033-1034.	5.7	2
3	Single but not alone: the transcriptomes of 14 000 single cells from developing cotyledon veins. Plant Journal, 2022, 110, 5-6.	5.7	2
4	From the redwood forest to the gulf stream waters – drought resistance in coast redwoods and giant sequoias. Plant Journal, 2022, 109, 5-6.	5.7	1
5	Quite the pickle: an auxin influx carrier controls spine formation in cucumber. Plant Journal, 2022, 110, 323-324.	5.7	О
6	Once, twice, three times a genome – how the three subâ€genomes of a water lily control leaf development. Plant Journal, 2022, 110, 625-626.	5.7	0
7	Circadian times they are aâ€changing – through flavonoids. Plant Journal, 2022, 110, 930-931.	5.7	0
8	Flowering time gene or jack of all trades?. Plant Journal, 2021, 105, 5-6.	5.7	1
9	Food for thought – how tuberization and drought tolerance are linked in potato. Plant Journal, 2021, 105, 853-854.	5.7	1
10	Find your identity – methylation dynamics in the sperm cell lineage. Plant Journal, 2021, 105, 563-564.	5.7	0
11	A hitchhiker's guide to foreign genomes. Plant Journal, 2021, 105, 1139-1140.	5.7	2
12	Living microfactories. Plant Journal, 2021, 105, 1447-1448.	5.7	0
13	Twelve genes at one blow: multiplex genome editing with CRISPR/Cas. Plant Journal, 2021, 106, 6-7.	5.7	3
14	Pump it up! How xylem sap pH controls water transport in leaves. Plant Journal, 2021, 106, 299-300.	5.7	2
15	How tobacco mosaic virus goes the distance. Plant Journal, 2021, 106, 894-895.	5.7	4
16	Diploid, triploid, tetraploid – chromatin organization in polyploid watermelon. Plant Journal, 2021, 106, 586-587.	5.7	1
17	Solving the theta enigma: polymerase ÆŸ deficiency causes developmental defects. Plant Journal, 2021, 106, 1195-1196.	5.7	1
18	Get in shape – how a polygalacturonase affects plant morphology. Plant Journal, 2021, 106, 1491-1492.	5.7	1

LEONIE VERHAGE

#	Article	IF	CITATIONS
19	Model behavior: finding out how to increase photosynthesis in C4 crops. Plant Journal, 2021, 107, 341-342.	5.7	4
20	Alert! Alert! Stressâ€induced systemic signals unraveled. Plant Journal, 2021, 107, 5-6.	5.7	0
21	Smelly business – Cadaverine modulates root growth by inhibiting biotin synthesis. Plant Journal, 2021, 107, 1281-1282.	5.7	0
22	Tear down that wall – cell wall remodeling in charophyte algae. Plant Journal, 2021, 108, 5-6.	5.7	1
23	Grow with the flow $\hat{a} \in $ microfluidics to study root hairs. Plant Journal, 2021, 108, 301-302.	5.7	1
24	Warm wheat does not rust – how wheat resists stripe rust when temperatures rise. Plant Journal, 2021, 108, 1239-1240.	5.7	0
25	How to become a metalhead – Understanding heavy metal tolerance in Arabidopsis halleri. Plant Journal, 2021, 108, 894-895.	5.7	0
26	It takes three to tango: an endobacterium plays a role in mycorrhizal symbiosis. Plant Journal, 2021, 108, 1545-1546.	5.7	0
27	On a hot summer day $\hat{a} \in \$ there is more to memory than chromatin. Plant Journal, 2020, 104, 5-6.	5.7	Ο
28	Making the jump: how plant–parasitic cyst nematodes adapt to new hosts. Plant Journal, 2020, 103, 1261-1262.	5.7	0
29	The colour of crop improvement. Plant Journal, 2020, 103, 1965-1966.	5.7	0
30	Apples and EARs: the role of an EAR domain in apple fruit firmness. Plant Journal, 2020, 103, 935-936.	5.7	2
31	Underground allies: how bacteria stimulate plant growth by altering root development. Plant Journal, 2020, 103, 1637-1638.	5.7	1
32	Shining new light on NAD. Plant Journal, 2020, 104, 1147-1148.	5.7	1
33	The evolution of (the) style: how pollinators get in fashion. Plant Journal, 2020, 104, 287-288.	5.7	0
34	Secrets of the seed: uncovering the real identity of the endospermâ€surrounding cuticle. Plant Journal, 2020, 104, 565-566.	5.7	0
35	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. PLoS Pathogens, 2020, 16, e1008652.	4.7	44
36	Targeted editing of the Arabidopsis mitochondrial genome. Plant Journal, 2020, 104, 1457-1458.	5.7	7

LEONIE VERHAGE

#	Article	IF	CITATIONS
37	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
38	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
39	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
40	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
41	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
42	A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. , 2020, 16, e1008652.		0
43	Pioneer Factors in Animals and Plants—Colonizing Chromatin for Gene Regulation. Molecules, 2018, 23, 1914.	3.8	18
44	Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants. PLoS ONE, 2017, 12, e0172950.	2.5	75
45	Plasticity versus Adaptation of Ambient–Temperature Flowering Response. Trends in Plant Science, 2016, 21, 6-8.	8.8	7
46	Research on floral timing by ambient temperature comes into blossom. Trends in Plant Science, 2014, 19, 583-591.	8.8	71
47	Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature. 2013. 503. 414-417.	27.8	409