Zhong-Jun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lacking of ESIPT Band of Aromatic ortho-Aminoaldehyde Derivatives Triggered by the N-H Vibration. Physical Chemistry Chemical Physics, 2022, , .	2.8	0
2	Generation of singlet oxygen catalyzed by the room-temperature-stable anthraquinone anion radical. Physical Chemistry Chemical Physics, 2022, 24, 14165-14171.	2.8	2
3	Dearomatization of Benzenoid Arenes Triggered by Triplet Excited State Intramolecular Proton Transfer. Journal of Physical Chemistry A, 2022, 126, 4424-4431.	2.5	1
4	Metalloradical complex Co–C˙Ph3 catalyzes the CO2 reduction in gas phase: a theoretical study. Physical Chemistry Chemical Physics, 2021, 23, 1392-1400.	2.8	0
5	Electrideâ€5ponsored Radicalâ€Controlled CO 2 Reduction to Organic Acids: A Computational Design. Chemistry - A European Journal, 2020, 26, 6234-6239.	3.3	3
6	Copper(I) catalyzed CO2 transformation: A density functional theory investigation. Computational and Theoretical Chemistry, 2020, 1175, 112745.	2.5	0
7	Theoretical study of a novel organic electride with large nonlinear optical responses. International Journal of Quantum Chemistry, 2020, 120, e26235.	2.0	3
8	Small Janus dimer as electric field manipulated molecular clam switch and electric information storage unit. International Journal of Quantum Chemistry, 2019, 119, e26005.	2.0	1
9	Theoretical study of the photochemical isomerization process of perfluoroaryltetrahedrane to perfluoroarylcyclobutadiene mediated by 9,10-dicyanoanthracene. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	0
10	Theoretical study of substituent effects on electride characteristics and the nonlinear optical properties of Li@calix[4]pyrrole. RSC Advances, 2019, 9, 37919-37925.	3.6	5
11	Finding allâ€nonmetal transitionâ€metalâ€like superatom and its magnetic building block. International Journal of Quantum Chemistry, 2018, 118, e25570.	2.0	2
12	Efficient External Electric Field Manipulated Nonlinear Optical Switches of All-Metal Electride Molecules with Infrared Transparency: Nonbonding Electron Transfer Forms an Excess Electron Lone Pair. Journal of Physical Chemistry C, 2017, 121, 958-968.	3.1	53
13	Theoretical investigation of boron-doped lithium clusters, BLi _n (n = 3–6), activating CO ₂ : an example of the carboxylation of C–H bonds. RSC Advances, 2016, 6, 84042-84049.	3.6	8
14	An External Electric Field Manipulated Second-Order Nonlinear Optical Switch of an Electride Molecule: A Long-Range Electron Transfer Forms a Lone Excess Electron Pair and Quenches Singlet Diradical. Journal of Physical Chemistry C, 2016, 120, 13656-13666.	3.1	50
15	Excess-electron-induced C–C bond formation in transformation of carbon dioxide. RSC Advances, 2016, 6, 851-858.	3.6	2
16	Nonlinear optical response and transparency of hexagonal boron nitride hybrid graphene nanoribbons. Chemical Physics Letters, 2014, 614, 57-61.	2.6	14
17	Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone–Wales defect rings. Journal of Materials Chemistry C, 2014, 2, 306-311.	5.5	42
18	The effects of external electric field: creating non-zero first hyperpolarizability for centrosymmetric benzene and strongly enhancing first hyperpolarizability for non-centrosymmetric edge-modified graphene ribbon H2N-(3,3)ZGNR-NO2. Journal of Molecular Modeling, 2013, 19, 3983-3991.	1.8	14

ZHONG-JUN ZHOU

#	Article	IF	CITATIONS
19	The structure and large nonlinear optical properties of a novel octupolar electride Li@36Adz. Computational and Theoretical Chemistry, 2013, 1023, 99-103.	2.5	29
20	Design of Lewis acid–base complex: enhancing the stability and first hyperpolarizability of large excess electron compound. Journal of Molecular Modeling, 2013, 19, 4805-4813.	1.8	7
21	New Acceptor–Bridge–Donor Strategy for Enhancing NLO Response with Long-Range Excess Electron Transfer from the NH ₂ M/M ₃ O Donor (M = Li, Na, K) to Inside the Electron Hole Cage C ₂₀ F ₁₉ Acceptor through the Unusual Ïf Chain Bridge (CH ₂) ₄ . lournal of Physical Chemistry A. 2013, 117, 2835-2843.	2.5	78
22	The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. Journal of Materials Chemistry, 2012, 22, 9652.	6.7	97
23	Theoretical study on the ion–molecule reaction of NH ⁺ with CH ₂ O. International Journal of Quantum Chemistry, 2012, 112, 1654-1666.	2.0	Ο
24	What is the role of defects in single-walled carbon nanotubes for nonlinear optical property?. Journal of Materials Chemistry, 2011, 21, 8905.	6.7	16
25	Electric Field-Driven Acidâ^'Base Chemistry: Proton Transfer from Acid (HCl) to Base (NH ₃ /H ₂ O). Journal of Physical Chemistry A, 2011, 115, 1418-1422.	2.5	43
26	Exceptionally Large Secondâ€Order Nonlinear Optical Response in Donor–Graphene Nanoribbon–Acceptor Systems. Chemistry - A European Journal, 2011, 17, 2414-2419.	3.3	59
27	Modulated Nonlinear Optical Responses and Charge Transfer Transition in Endohedral Fullerene Dimers Na@C ₆₀ C ₆₀ @F with <i>n</i> Fold Covalent Bond (<i>n</i> = 1, 2, 5, and) Tj	ETQ:q1	1 0.784314 rg <mark></mark> 87
28	Push–pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Physical Chemistry Chemical Physics, 2010, 12, 10562.	2.8	66
29	Effect of substitution and cooperativity on the Cl–F blue shift in single-electron halogen-bonded H ₃ C ··· ClF complex. Molecular Physics, 2010, 108, 2021-2026.	1.7	11
30	Bonding and correlation analysis of various Si ₂ CO isomers on the potential energy surface. International Journal of Quantum Chemistry, 2009, 109, 907-919.	2.0	0