List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6708220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skinâ€draining lymph nodes. Immunology and Cell Biology, 2022, , .	2.3	3
2	Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death and Differentiation, 2021, 28, 2946-2956.	11.2	4
3	Temporal Analysis of Brd4 Displacement in the Control of B Cell Survival, Proliferation, and Differentiation. Cell Reports, 2020, 33, 108290.	6.4	4
4	Severe Impairment of TNF Post-transcriptional Regulation Leads to Embryonic Death. IScience, 2020, 23, 101726.	4.1	8
5	Constitutive overexpression of TNF in BPSM1 mice causes iBALT and bone marrow nodular lymphocytic hyperplasia. Immunology and Cell Biology, 2019, 97, 29-38.	2.3	2
6	LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature, 2018, 557, 112-117.	27.8	168
7	TNF-induced chronic inflammation does not affect tumorigenesis driven by p53 loss. Cell Death and Disease, 2018, 8, e2550-e2550.	6.3	2
8	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-11 ² Activation. Cell Reports, 2018, 25, 2339-2353.e4.	6.4	164
9	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	12.8	110
10	LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L. Nature Communications, 2018, 9, 3910.	12.8	81
11	Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner. Frontiers in Immunology, 2018, 9, 592.	4.8	13
12	Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 2017, 24, 878-888.	11.2	103
13	Bim suppresses the development of SLE by limiting myeloid inflammatory responses. Journal of Experimental Medicine, 2017, 214, 3753-3773.	8.5	27
14	Male sterility in Mcl-1-flox mice is not due to enhanced Mcl1 protein stability. Cell Death and Disease, 2016, 7, e2490-e2490.	6.3	3
15	Physiological restraint of Bak by Bcl-x _L is essential for cell survival. Genes and Development, 2016, 30, 1240-1250.	5.9	40
16	Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nature Communications, 2016, 7, 13353.	12.8	47
17	Is BOK required for apoptosis induced by endoplasmic reticulum stress?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E492-3.	7.1	27
18	BCL2-modifying factor promotes germ cell loss during murine oogenesis. Reproduction, 2016, 151, 553-562.	2.6	13

#	Article	IF	CITATIONS
19	Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis. Cell Death and Disease, 2016, 7, e2132-e2132.	6.3	18
20	Deregulation of TNF expression can also cause heart valve disease. Cytokine, 2016, 77, 248-249.	3.2	3
21	Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4044-4049.	7.1	43
22	Functional antagonism between pro-apoptotic BIM and anti-apoptotic BCL-XL in MYC-induced lymphomagenesis. Oncogene, 2015, 34, 1872-1876.	5.9	21
23	Bclâ€2 Antagonists Kill Plasmacytoid Dendritic Cells From Lupusâ€Prone Mice and Dampen Interferonâ€Î± Production. Arthritis and Rheumatology, 2015, 67, 797-808.	5.6	43
24	EGF-mediated induction of Mcl-1 at the switch to lactation is essential for alveolar cell survival. Nature Cell Biology, 2015, 17, 365-375.	10.3	65
25	BCL-2 is dispensable for thrombopoiesis and platelet survival. Cell Death and Disease, 2015, 6, e1721-e1721.	6.3	68
26	Spontaneous retrotransposon insertion into <i>TNF</i> 3′UTR causes heart valve disease and chronic polyarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9698-9703.	7.1	29
27	Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2. Oncogene, 2015, 34, 3926-3934.	5.9	27
28	Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice. Cell Death and Disease, 2014, 5, e1446-e1446.	6.3	25
29	Evidence against upstream regulation of the unfolded protein response (UPR) by pro-apoptotic BIM and PUMA. Cell Death and Disease, 2014, 5, e1354-e1354.	6.3	8
30	Loss of the Proapoptotic BH3-Only Protein BCL-2 Modifying Factor Prolongs the Fertile Life Span in Female Mice1. Biology of Reproduction, 2014, 90, 77.	2.7	33
31	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5.9	156
32	Enhanced stability of Mcl1, a prosurvival Bcl2 relative, blunts stress-induced apoptosis, causes male sterility, and promotes tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 261-266.	7.1	43
33	Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death and Differentiation, 2014, 21, 1687-1695.	11.2	19
34	Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the BH3-only proteins Bim and Bmf. Blood, 2014, 123, 2652-2662.	1.4	40
35	Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 959-965.	14.5	209
36	Foxoâ€mediated <i>Bim</i> transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3â€only protein. EMBO Reports, 2013, 14, 992-998.	4.5	26

PHILIPPE BOUILLET

#	Article	IF	CITATIONS
37	Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death and Disease, 2013, 4, e650.	6.3	62
38	IL-15 Fosters Age-Driven Regulatory T Cell Accrual in the Face of Declining IL-2 Levels. Frontiers in Immunology, 2013, 4, 161.	4.8	54
39	HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia. Oncotarget, 2013, 4, 1933-1947.	1.8	48
40	Alternative splicing of Bim and Erk-mediated BimEL phosphorylation are dispensable for hematopoietic homeostasis in vivo. Cell Death and Differentiation, 2012, 19, 1060-1068.	11.2	32
41	Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 2012, 26, 120-125.	5.9	344
42	Detection of Bcl-2 family member Bcl-G in mouse tissues using new monoclonal antibodies. Cell Death and Disease, 2012, 3, e378-e378.	6.3	7
43	Bcl-2 family member Bcl-G is not a proapoptotic protein. Cell Death and Disease, 2012, 3, e404-e404.	6.3	20
44	The BH3-Only Proteins Bim and Puma Cooperate to Impose Deletional Tolerance of Organ-Specific Antigens. Immunity, 2012, 37, 451-462.	14.3	75
45	DNA Damage-Induced Primordial Follicle Oocyte Apoptosis and Loss of Fertility Require TAp63-Mediated Induction of Puma and Noxa. Molecular Cell, 2012, 48, 343-352.	9.7	214
46	Death receptor-induced apoptosis signalling - essential guardian against autoimmune disease. Arthritis Research and Therapy, 2012, 14, .	3.5	0
47	Bim must be able to engage all pro-survival Bcl-2 family members for efficient tumor suppression. Oncogene, 2012, 31, 3392-3396.	5.9	20
48	Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood, 2012, 119, 5807-5816.	1.4	168
49	BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death and Differentiation, 2012, 19, 915-925.	11.2	99
50	Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Experimental Medicine, 2011, 208, 1351-1358.	8.5	29
51	Can the analysis of BH3-only protein knockout mice clarify the issue of â€ ⁻ direct versus indirect' activation of Bax and Bak?. Cell Death and Differentiation, 2011, 18, 1545-1546.	11.2	30
52	Regulation of memory B-cell survival by the BH3-only protein Puma. Blood, 2011, 118, 4120-4128.	1.4	39
53	Type I Interferon Drives Dendritic Cell Apoptosis via Multiple BH3-Only Proteins following Activation by PolyIC In Vivo. PLoS ONE, 2011, 6, e20189.	2.5	57
54	Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13135-13140.	7.1	98

#	Article	IF	CITATIONS
55	Defects in the Bcl-2–Regulated Apoptotic Pathway Lead to Preferential Increase of CD25lowFoxp3+ Anergic CD4+ T Cells. Journal of Immunology, 2011, 187, 1566-1577.	0.8	32
56	Destruction of tumor vasculature and abated tumor growth upon VEGF blockade is driven by proapoptotic protein Bim in endothelial cells. Journal of Cell Biology, 2011, 193, i14-i14.	5.2	0
57	Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood, 2010, 116, 3197-3207.	1.4	115
58	Apoptosis regulators Fas and Bim synergistically control Tâ€lymphocyte homeostatic proliferation. European Journal of Immunology, 2010, 40, 3043-3053.	2.9	15
59	Individual and overlapping roles of BH3-only proteins Bim and Bad in apoptosis of lymphocytes and platelets and in suppression of thymic lymphoma development. Cell Death and Differentiation, 2010, 17, 1655-1664.	11.2	56
60	Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nature Immunology, 2010, 11, 171-179.	14.5	247
61	Antiapoptotic molecule Bclâ€2 is essential for the anabolic activity of parathyroid hormone in bone. Annals of the New York Academy of Sciences, 2010, 1192, 330-337.	3.8	10
62	Mcl-1 Is Essential for Germinal Center Formation and B Cell Memory. Science, 2010, 330, 1095-1099.	12.6	196
63	Glucose Induces Pancreatic Islet Cell Apoptosis That Requires the BH3-Only Proteins Bim and Puma and Multi-BH Domain Protein Bax. Diabetes, 2010, 59, 644-652.	0.6	103
64	Anti-apoptotic Molecule Bcl-2 Regulates the Differentiation, Activation, and Survival of Both Osteoblasts and Osteoclasts. Journal of Biological Chemistry, 2009, 284, 36659-36669.	3.4	53
65	A tumor suppressor function for caspase-2. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5336-5341.	7.1	151
66	The Bcl-2 family in autoimmune and degenerative disorders. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 570-583.	4.9	28
67	Fatal Hepatitis Mediated by Tumor Necrosis Factor TNFα Requires Caspase-8 and Involves the BH3-Only Proteins Bid and Bim. Immunity, 2009, 30, 56-66.	14.3	128
68	XIAP discriminates between type I and type II FAS-induced apoptosis. Nature, 2009, 460, 1035-1039.	27.8	421
69	Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature, 2009, 461, 659-663.	27.8	348
70	CD95, BIM and T cell homeostasis. Nature Reviews Immunology, 2009, 9, 514-519.	22.7	165
71	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Cell Biology, 2009, 186, 355-362.	5.2	164
72	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Experimental Medicine, 2009, 206, i19-i19.	8.5	0

#	Article	IF	CITATIONS
73	MicroRNAs and lymphocyte homeostasis: Dangerous eggs in a single basket. Immunology and Cell Biology, 2008, 86, 387-388.	2.3	1
74	What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain. Immunology and Cell Biology, 2008, 86, 57-66.	2.3	59
75	Intrahepatic Murine CD8 T-Cell Activation Associates With a Distinct Phenotype Leading to Bim-Dependent Death. Gastroenterology, 2008, 135, 989-997.	1.3	114
76	Apoptosis Regulators Fas and Bim Cooperate in Shutdown of Chronic Immune Responses and APrevention of Autoimmunity. Immunity, 2008, 28, 197-205.	14.3	225
77	A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. Journal of Cell Biology, 2008, 180, 341-355.	5.2	157
78	Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8161-8166.	7.1	190
79	Bim Expression Indicates the Pathway to Retinal Cell Death in Development and Degeneration. Journal of Neuroscience, 2007, 27, 10887-10894.	3.6	29
80	Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. Journal of Cell Science, 2007, 120, 2044-2052.	2.0	59
81	Proapoptotic BH3-only protein Bim is essential for developmentally programmed death of germinal center-derived memory B cells and antibody-forming cells. Blood, 2007, 110, 3978-3984.	1.4	99
82	ER Stress Triggers Apoptosis by Activating BH3-Only Protein Bim. Cell, 2007, 129, 1337-1349.	28.9	1,235
83	BIM Regulates Apoptosis during Mammary Ductal Morphogenesis, and Its Absence Reveals Alternative Cell Death Mechanisms. Developmental Cell, 2007, 12, 221-234.	7.0	220
84	Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science, 2007, 315, 856-859.	12.6	1,021
85	Loss of PKD1 and loss of Bcl-2 elicit polycystic kidney disease through distinct mechanisms. Cell Death and Differentiation, 2006, 13, 1123-1127.	11.2	11
86	Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia–ischemia. Brain Research, 2006, 1099, 150-159.	2.2	56
87	Adenosine A2Areceptor-mediated cell death of mouse thymocytes involves adenylate cyclase and Bim and is negatively regulated by Nur77. European Journal of Immunology, 2006, 36, 1559-1571.	2.9	15
88	The RUNX3 Tumor Suppressor Upregulates Bim in Gastric Epithelial Cells Undergoing Transforming Growth FactorÎ ² -Induced Apoptosis. Molecular and Cellular Biology, 2006, 26, 4474-4488.	2.3	151
89	Antigen Challenge Inhibits Thymic Emigration. Journal of Immunology, 2006, 176, 4553-4561.	0.8	15
90	Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14907-14912.	7.1	310

#	Article	IF	CITATIONS
91	Polycystic kidney disease prevented by transgenic RNA interference. Cell Death and Differentiation, 2005, 12, 831-833.	11.2	29
92	Concomitant loss of proapoptotic BH3-only Bcl-2 antagonists Bik and Bim arrests spermatogenesis. EMBO Journal, 2005, 24, 3963-3973.	7.8	90
93	Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell, 2005, 7, 227-238.	16.8	276
94	Role of Bim and other Bcl-2 Family Members in Autoimmune and Degenerative Diseases. , 2005, 9, 74-94.		45
95	Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. Journal of Experimental Medicine, 2005, 201, 1949-1960.	8.5	51
96	NKT Cell Stimulation with Glycolipid Antigen In Vivo: Costimulation-Dependent Expansion, Bim-Dependent Contraction, and Hyporesponsiveness to Further Antigenic Challenge. Journal of Immunology, 2005, 175, 3092-3101.	0.8	163
97	In vitro and in vivo assays for osteoclast apoptosis. Biological Procedures Online, 2005, 7, 48-59.	2.9	21
98	Subversion of the Bcl-2 Life/Death Switch in Cancer Development and Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 469-477.	1.1	26
99	Proapoptotic BH3-Only Bcl-2 Family Member Bik/Blk/Nbk Is Expressed in Hemopoietic and Endothelial Cells but Is Redundant for Their Programmed Death. Molecular and Cellular Biology, 2004, 24, 1570-1581.	2.3	110
100	Loss of Bim Increases T Cell Production and Function in Interleukin 7 Receptor–deficient Mice. Journal of Experimental Medicine, 2004, 200, 1189-1195.	8.5	118
101	Bim is a suppressor of Myc-induced mouse B cell leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6164-6169.	7.1	444
102	Negative selection of semimature CD4+8-HSA+ thymocytes requires the BH3-only protein Bim but is independent of death receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7052-7057.	7.1	71
103	Loss of pro-apoptotic BH3-only Bcl-2 family member bim does not protect mutantLurcher mice from neurodegeneration. Journal of Neuroscience Research, 2003, 74, 777-781.	2.9	10
104	The control of apoptosis in lymphocyte selection. Immunological Reviews, 2003, 193, 82-92.	6.0	67
105	Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO Journal, 2003, 22, 6653-6664.	7.8	227
106	Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14175-14180.	7.1	215
107	Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival. Blood, 2003, 101, 2393-2400.	1.4	133
108	Loss of the Pro-Apoptotic BH3-only Bcl-2 Family Member Bim Inhibits BCR Stimulation–induced Apoptosis and Deletion of Autoreactive B Cells. Journal of Experimental Medicine, 2003, 198, 1119-1126.	8.5	267

#	Article	IF	CITATIONS
109	Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-Antigen Occurs by a Bcl-2–inhibitable Pathway Mediated by Bim. Journal of Experimental Medicine, 2002, 196, 947-955.	8.5	136
110	Activated T Cell Death In Vivo Mediated by Proapoptotic Bcl-2 Family Member Bim. Immunity, 2002, 16, 759-767.	14.3	514
111	Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 2002, 419, 634-637.	27.8	517
112	BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 2002, 415, 922-926.	27.8	713
113	Bax and Bak: back-bone of T cell death. Nature Immunology, 2002, 3, 893-894.	14.5	18
114	BH3-only proteins — evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. Journal of Cell Science, 2002, 115, 1567-1574.	2.0	312
115	Homeostasis, that's the rule Journal of Cell Science, 2002, 115, 3226-3226.	2.0	0
116	Les protéines à BH3-seulement à l'origine de maladies auto-immunes ou dégénératives�. Medecine/Sciences, 2002, 18, 810-811.	0.2	0
117	BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. Journal of Cell Science, 2002, 115, 1567-74.	2.0	251
118	Degenerative Disorders Caused by Bcl-2 Deficiency Prevented by Loss of Its BH3-Only Antagonist Bim. Developmental Cell, 2001, 1, 645-653.	7.0	265
119	Induction of BIM, a Proapoptotic BH3-Only BCL-2 Family Member, Is Critical for Neuronal Apoptosis. Neuron, 2001, 29, 615-628.	8.1	426
120	Gene structure, alternative splicing, and chromosomal localization of pro-apoptotic Bcl-2 relative Bim. Mammalian Genome, 2001, 12, 163-168.	2.2	133
121	Differential expression of retinoic acid-inducible (Stra) genes during mouse placentation. Mechanisms of Development, 2000, 92, 295-299.	1.7	42
122	The Role of Bim, a Proapoptotic BH3â€Only Member of the Bclâ€2 Family, in Cellâ€Death Control. Annals of the New York Academy of Sciences, 2000, 917, 541-548.	3.8	113
123	The Role of the Proâ€Apoptotic Bclâ€2 Family Member Bim in Physiological Cell Death. Annals of the New York Academy of Sciences, 2000, 926, 83-89.	3.8	28
124	Proapoptotic Bcl-2 Relative Bim Required for Certain Apoptotic Responses, Leukocyte Homeostasis, and to Preclude Autoimmunity. Science, 1999, 286, 1735-1738.	12.6	1,386
125	Control of Apoptosis in Hematopoietic Cells by the Bcl-2 Family of Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 351-358.	1.1	29
126	Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mechanisms of Development, 1997, 63, 173-186.	1.7	184

#	Article	IF	CITATIONS
127	Meis2, a novel mousePbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Developmental Dynamics, 1997, 210, 173-183.	1.8	88
128	AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mechanisms of Development, 1996, 54, 83-94.	1.7	175
129	Isolation of retinoic acid-repressed genes from P19 embryonal carcinoma cells. Gene, 1996, 174, 79-84.	2.2	31
130	AP-2.2: A Novel AP-2-Related Transcription Factor Induced by Retinoic Acid during Differentiation of P19 Embryonal Carcinoma Cells. Experimental Cell Research, 1996, 225, 338-347.	2.6	106
131	The Expression Pattern of the Mouse Receptor Tyrosine Kinase Gene MDK1 Is Conserved through Evolution and Requires Hoxa-2 for Rhombomere-Specific Expression in Mouse Embryos. Developmental Biology, 1996, 177, 397-412.	2.0	79
132	A new mouse member of the Wnt gene family, mWnt-8, is expressed during early embryogenesis and is ectopically induced by retinoic acid. Mechanisms of Development, 1996, 58, 141-152.	1.7	92
133	Restricted expression of a novel retinoic acid responsive gene during limb bud dorsoventral patterning and endochondral ossification. , 1996, 19, 66-73.		18
134	Sequence and expression pattern of the Stra7 (Gbx-2) homeobox-containing gene induced by retinoic acid in P19 embryonal carcinoma cells. Developmental Dynamics, 1995, 204, 372-382.	1.8	100
135	Comparative expression of thepsoriasin (S100A7) andS100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. International Journal of Cancer, 1995, 63, 297-303.	5.1	79
136	Efficient Cloning of cDNAs of Retinoic Acid-Responsive Genes in P19 Embryonal Carcinoma Cells and Characterization of a Novel Mouse Gene, Stra1 (Mouse LERK-2/Eplg2). Developmental Biology, 1995, 170, 420-433.	2.0	168
137	Apoptosis and Cell Survival in the Immune System. , 0, , 333-349.		Ο