Yael Diskin-Posner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling the helicity of ï€-conjugated oligomers by tuning the aromatic backbone twist. Nature Communications, 2022, 13, 451.	12.8	20
2	Dehydrogenative ester synthesis from enol ethers and water with a ruthenium complex catalyzing two reactions in synergy. Green Chemistry, 2022, 24, 1481-1487.	9.0	8
3	Iron-catalysed ring-opening metathesis polymerization of olefins and mechanistic studies. Nature Catalysis, 2022, 5, 494-502.	34.4	19
4	Ternary host-guest complexes with rapid exchange kinetics and photoswitchable fluorescence. CheM, 2022, 8, 2362-2379.	11.7	15
5	Controlled Selectivity through Reversible Inhibition of the Catalyst: Stereodivergent Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2022, 144, 13266-13275.	13.7	14
6	Homogeneous Reforming of Aqueous Ethylene Glycol to Glycolic Acid and Pure Hydrogen Catalyzed by Pincerâ€Ruthenium Complexes Capable of Metal–Ligand Cooperation. Chemistry - A European Journal, 2021, 27, 4715-4722.	3.3	22
7	Strongly Anharmonic Octahedral Tilting in Two-Dimensional Hybrid Halide Perovskites. ACS Nano, 2021, 15, 10153-10162.	14.6	59
8	Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nature Communications, 2021, 12, 2994.	12.8	13
9	Near-Ambient-Temperature Dehydrogenative Synthesis of the Amide Bond: Mechanistic Insight and Applications. ACS Catalysis, 2021, 11, 7383-7393.	11.2	19
10	Kinetic Selection in the Outâ€ofâ€Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angewandte Chemie - International Edition, 2021, 60, 20366-20375.	13.8	9
11	Fast Ion-Chelate Dissociation Rate for <i>In Vivo</i> MRI of Labile Zinc with Frequency-Specific Encodability. Journal of the American Chemical Society, 2021, 143, 11751-11758.	13.7	12
12	Kinetic Selection in the Outâ€ofâ€Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angewandte Chemie, 2021, 133, 20529-20538.	2.0	0
13	Manganese Catalyzed Hydrogenation of Azo (N=N) Bonds to Amines. Advanced Synthesis and Catalysis, 2021, 363, 3744-3749.	4.3	12
14	Manganese-Pincer-Catalyzed Nitrile Hydration, α-Deuteration, and α-Deuterated Amide Formation via Metal Ligand Cooperation. ACS Catalysis, 2021, 11, 10239-10245.	11.2	17
15	Cation-Ligand Complexation Mediates the Temporal Evolution of Colloidal Fluoride Nanocrystals through Transient Aggregation. Nano Letters, 2021, 21, 9916-9921.	9.1	2
16	Structural basis of reactivation of oncogenic p53 mutants by a small molecule: methylene quinuclidinone (MQ). Nature Communications, 2021, 12, 7057.	12.8	39
17	Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics, 2020, 39, 279-285.	2.3	22
18	Catalytic Oxidative Deamination by Water with H ₂ Liberation. Journal of the American Chemical Society, 2020, 142, 20875-20882.	13.7	26

#	Article	IF	CITATIONS
19	Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage. Journal of the American Chemical Society, 2020, 142, 14557-14565.	13.7	39
20	Palladium Complexes of Corroles and Sapphyrins. Chemistry - A European Journal, 2020, 26, 9481-9485.	3.3	15
21	Synthesis of oxalamides by acceptorless dehydrogenative coupling of ethylene glycol and amines and the reverse hydrogenation catalyzed by ruthenium. Chemical Science, 2020, 11, 7188-7193.	7.4	23
22	Synthesis and Reactivity of Cationic Boron Complexes Distorted by Pyridineâ€based Pincer Ligands: Isolation of a Photochemical Hofmann–Martiusâ€type Intermediate. Angewandte Chemie - International Edition, 2020, 59, 4932-4936.	13.8	18
23	Anharmonic Lattice Vibrations in Smallâ€Molecule Organic Semiconductors. Advanced Materials, 2020, 32, 1908028.	21.0	24
24	Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nature Catalysis, 2020, 3, 887-892.	34.4	32
25	Positive shift in corrole redox potentials leveraged by modest β-CF3-substitution helps achieve efficient photocatalytic C–H bond functionalization by group 13 complexes. Dalton Transactions, 2019, 48, 12279-12286.	3.3	24
26	<i>syn</i> -(Me,Me)Bimane as a Structural Building Block in Metal Coordination Architectures. Crystal Growth and Design, 2019, 19, 4358-4368.	3.0	6
27	Reversible switching of arylazopyrazole within a metal–organic cage. Beilstein Journal of Organic Chemistry, 2019, 15, 2398-2407.	2.2	35
28	Polymorphism of l â€Tryptophan. Angewandte Chemie - International Edition, 2019, 58, 18788-18792.	13.8	21
29	Superstructured metallocorroles for electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 11912-11915.	4.1	16
30	Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles. Journal of the American Chemical Society, 2019, 141, 16486-16493.	13.7	47
31	Maximizing Property Tuning of Phosphorus Corrole Photocatalysts through a Trifluoromethylation Approach. Inorganic Chemistry, 2019, 58, 6184-6198.	4.0	27
32	Pyridine-Based PCP-Ruthenium Complexes: Unusual Structures and Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 7554-7561.	13.7	32
33	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie, 2019, 131, 3411-3415.	2.0	7
34	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie - International Edition, 2019, 58, 3373-3377.	13.8	23
35	Dehydrogenative Cross-Coupling of Primary Alcohols To Form Cross-Esters Catalyzed by a Manganese Pincer Complex. ACS Catalysis, 2019, 9, 479-484.	11.2	79
36	Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nature Communications, 2018, 9, 641.	12.8	148

#	Article	IF	CITATIONS
37	Nâ€Substituted Hydrazones by Manganeseâ€Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie, 2018, 130, 2201-2204.	2.0	29
38	N‣ubstituted Hydrazones by Manganese atalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie - International Edition, 2018, 57, 2179-2182.	13.8	104
39	Reversible photoswitching of encapsulated azobenzenes in water. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9379-9384.	7.1	110
40	Formal oxidative addition of a C–H bond by a 16e iridium(<scp>i</scp>) complex involves metal–ligand cooperation. Chemical Communications, 2018, 54, 5365-5368.	4.1	7
41	CO Oxidation by N ₂ O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism. Journal of the American Chemical Society, 2018, 140, 7061-7064.	13.7	52
42	CO ₂ activation by metal â^' ligand-cooperation mediated by iridium pincer complexes. Journal of Coordination Chemistry, 2018, 71, 1679-1689.	2.2	12
43	Sorting of Molecular Building Blocks from Solution to Surface. Journal of the American Chemical Society, 2018, 140, 8162-8171.	13.7	10
44	Highly Selective, Efficient Deoxygenative Hydrogenation of Amides Catalyzed by a Manganese Pincer Complex via Metal–Ligand Cooperation. ACS Catalysis, 2018, 8, 8014-8019.	11.2	100
45	Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angewandte Chemie - International Edition, 2018, 57, 13444-13448.	13.8	50
46	Synthesis of Pyrazines and Quinoxalines via Acceptorless Dehydrogenative Coupling Routes Catalyzed by Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 7734-7741.	11.2	124
47	Metal–Ligand Cooperation as Key in Formation of Dearomatized Ni ^{II} –H Pincer Complexes and in Their Reactivity toward CO and CO ₂ . Organometallics, 2018, 37, 2217-2221.	2.3	39
48	Quenching of syn-bimane fluorescence by Na+ complexation. New Journal of Chemistry, 2018, 42, 15541-15545.	2.8	7
49	Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angewandte Chemie, 2018, 130, 13632-13636.	2.0	13
50	The Ferraquinone–Ferrahydroquinone Couple: Combining Quinonic and Metal-Based Reactivity. Journal of the American Chemical Society, 2017, 139, 2799-2807.	13.7	28
51	Selective <i>N</i> -Formylation of Amines with H ₂ and CO ₂ Catalyzed by Cobalt Pincer Complexes. ACS Catalysis, 2017, 7, 2500-2504.	11.2	137
52	Manganeseâ€Catalyzed Nâ€Formylation of Amines by Methanol Liberating H ₂ : A Catalytic and Mechanistic Study. Angewandte Chemie, 2017, 129, 4293-4297.	2.0	49
53	Formation of Alkanes by Aerobic Carbon–Carbon Bond Coupling Reactions Catalyzed by a Phosphovanadomolybdic Acid. ACS Catalysis, 2017, 7, 2725-2729.	11.2	9
54	Manganeseâ€Catalyzed Nâ€Formylation of Amines by Methanol Liberating H ₂ : A Catalytic and Mechanistic Study. Angewandte Chemie - International Edition, 2017, 56, 4229-4233.	13.8	170

#	Article	IF	CITATIONS
55	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie, 2017, 129, 15188-15192.	2.0	39
56	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie - International Edition, 2017, 56, 14992-14996.	13.8	141
57	Synthesis of Cyclic Imides by Acceptorless Dehydrogenative Coupling of Diols and Amines Catalyzed by a Manganese Pincer Complex. Journal of the American Chemical Society, 2017, 139, 11722-11725.	13.7	135
58	Bottom-Up Construction of a CO2-Based Cycle for the Photocarbonylation of Benzene, Promoted by a Rhodium(I) Pincer Complex. Journal of the American Chemical Society, 2016, 138, 9941-9950.	13.7	49
59	Reductive Cleavage of CO ₂ by Metal–Ligand-Cooperation Mediated by an Iridium Pincer Complex. Journal of the American Chemical Society, 2016, 138, 6445-6454.	13.7	88
60	Reversible Aromaticity Transfer in a Bora-Cycle: Boron–Ligand Cooperation. Journal of the American Chemical Society, 2016, 138, 13307-13313.	13.7	30
61	syn-Bimane as a chelating O-donor ligand for palladium(ii). Dalton Transactions, 2016, 45, 17123-17131.	3.3	11
62	Avilamycin and evernimicin induce structural changes in rProteins uL16 and CTC that enhance the inhibition of A-site tRNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6796-E6805.	7.1	21
63	New Ruthenium Nitrosyl Pincer Complexes Bearing an O2 Ligand. Mono-Oxygen Transfer. Inorganic Chemistry, 2015, 54, 2253-2263.	4.0	12
64	O2 Activation by Metal–Ligand Cooperation with Irl PNP Pincer Complexes. Journal of the American Chemical Society, 2015, 137, 4634-4637.	13.7	42
65	Generation of Mono- and Bimetallic Palladium Complexes and Mechanistic Insight into an Operative Metal Ring-Walking Process. Organometallics, 2015, 34, 1098-1106.	2.3	11
66	Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy. Angewandte Chemie - International Edition, 2015, 54, 12357-12360.	13.8	166
67	How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorganic Chemistry, 2015, 54, 4909-4926.	4.0	76
68	Bismuth-Substituted "Sandwich―Type Polyoxometalate Catalyst for Activation of Peroxide: Umpolung of the Peroxo Intermediate and Change of Chemoselectivity. ACS Catalysis, 2015, 5, 3336-3341.	11.2	38
69	Synthesis and Reactivity of Iron Complexes with a New Pyrazine-Based Pincer Ligand, and Application in Catalytic Low-Pressure Hydrogenation of Carbon Dioxide. Inorganic Chemistry, 2015, 54, 4526-4538.	4.0	119
70	A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nature Communications, 2015, 6, 6859.	12.8	115
71	Direct Synthesis of Secondary Amines From Alcohols and Ammonia Catalyzed by a Ruthenium Pincer Complex. Catalysis Letters, 2015, 145, 139-144.	2.6	58
72	Iron Dicarbonyl Complexes Featuring Bipyridineâ€Based PNN Pincer Ligands with Short Interpyridine CC Bond Lengths: Innocent or Nonâ€Innocent Ligand?. Chemistry - A European Journal, 2014, 20, 4403-4413.	3.3	56

#	Article	IF	CITATIONS
73	Reversible CO ₂ binding triggered by metal–ligand cooperation in a rhenium(<scp>i</scp>) PNP pincer-type complex and the reaction with dihydrogen. Chemical Science, 2014, 5, 2043-2051.	7.4	120
74	Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water. ACS Catalysis, 2014, 4, 2649-2652.	11.2	176
75	Direct Observation of Reductive Elimination of MeX (X = Cl, Br, I) from Rh ^{III} Complexes: Mechanistic Insight and the Importance of Sterics. Journal of the American Chemical Society, 2013, 135, 11040-11047.	13.7	48
76	A Phosphine-Accelerated Ar _F –Chloride Bond Activation Process by Palladium. Organometallics, 2013, 32, 3074-3082.	2.3	3
77	High Charge Delocalization and Conjugation in Oligofuran Molecular Wires. Chemistry - A European Journal, 2013, 19, 13140-13150.	3.3	52
78	Synthesis, Structures, and Dearomatization by Deprotonation of Iron Complexes Featuring Bipyridine-based PNN Pincer Ligands. Inorganic Chemistry, 2013, 52, 9636-9649.	4.0	53
79	Iron Pincer Complex Catalyzed, Environmentally Benign, <i>E</i> â€Selective Semiâ€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 14131-14134.	13.8	215
80	Activation of Nitriles by Metal Ligand Cooperation. Reversible Formation of Ketimido- and Enamido-Rhenium PNP Pincer Complexes and Relevance to Catalytic Design. Journal of the American Chemical Society, 2013, 135, 17004-17018.	13.7	110
81	Ru(0) and Ru(II) Nitrosyl Pincer Complexes: Structure, Reactivity, and Catalytic Activity. Inorganic Chemistry, 2013, 52, 11469-11479.	4.0	29
82	Anionic Nickel(II) Complexes with Doubly Deprotonated PNP Pincer-Type Ligands and Their Reactivity toward CO ₂ . Organometallics, 2013, 32, 300-308.	2.3	79
83	Stepwise Metal–Ligand Cooperation by a Reversible Aromatization/Deconjugation Sequence in Ruthenium Complexes with a Tetradentate Phenanthrolineâ€Based Ligand. Chemistry - A European Journal, 2013, 19, 3407-3414.	3.3	49
84	Formal loss of an H radical by a cobalt complex via metal–ligand cooperation. Chemical Communications, 2013, 49, 2771.	4.1	63
85	PNN Ruthenium Pincer Complexes Based on Phosphinated 2,2′-Dipyridinemethane and 2,2′-Oxobispyridine. Metal–Ligand Cooperation in Cyclometalation and Catalysis. Organometallics, 2013, 32, 2973-2982.	2.3	40
86	Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions. Nucleic Acids Research, 2013, 41, 8748-8759.	14.5	60
87	Palladium-Catalyzed Cross-Coupling Reactions with Fluorinated Substrates: Mechanistic Insights into the Undesired Hydrodehalogenation of Aryl Halides. Organometallics, 2012, 31, 1271-1274.	2.3	14
88	PNS-Type Ruthenium Pincer Complexes. Organometallics, 2012, 31, 6207-6214.	2.3	45
89	Exclusive C–C Oxidative Addition in a Rhodium Thiophosphoryl Pincer Complex and Computational Evidence for an η ³ -C–C–H Agostic Intermediate. Organometallics, 2012, 31, 505-512.	2.3	33
90	N–H Activation by Rh(I) via Metal–Ligand Cooperation. Organometallics, 2012, 31, 4083-4101.	2.3	83

#	Article	IF	CITATIONS
91	Iron Borohydride Pincer Complexes for the Efficient Hydrogenation of Ketones under Mild, Baseâ€Free Conditions: Synthesis and Mechanistic Insight. Chemistry - A European Journal, 2012, 18, 7196-7209.	3.3	180
92	A New Mode of Activation of CO ₂ by Metal–Ligand Cooperation with Reversible CC and MO Bond Formation at Ambient Temperature. Chemistry - A European Journal, 2012, 18, 9194-9197.	3.3	125
93	Selective Acceptorless Conversion of Primary Alcohols to Acetals and Dihydrogen Catalyzed by the Ruthenium(II) Complex Ru(PPh3)2(NCCH3)2(SO4). Advanced Synthesis and Catalysis, 2012, 354, 497-504.	4.3	48
94	Photocatalytic Splitting of CS ₂ to S ₈ and a Carbon–Sulfur Polymer Catalyzed by a Bimetallic Ruthenium(II) Compound with a Tertiary Amine Binding Site: Toward Photocatalytic Splitting of CO ₂ ?. Inorganic Chemistry, 2011, 50, 11273-11275.	4.0	10
95	Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I) Phenanthrolineâ^'Polyoxometalate Hybrid Complex. Journal of the American Chemical Society, 2011, 133, 188-190.	13.7	206
96	Aliphatic and aromatic C–H activation of benzo[h]quinolines by Rh(I). Unique precursor dependent formation of mono-, di- and trinuclear complexes. Inorganica Chimica Acta, 2011, 369, 260-269.	2.4	4
97	Copper(I) Complexes of Bipyridine and Terpyridine with Fluorous Tails and the Formation of Crystalline Materials with Fluorous Layers. European Journal of Inorganic Chemistry, 2011, 2011, 1792-1796.	2.0	3
98	Lowâ€Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity. Angewandte Chemie - International Edition, 2011, 50, 9948-9952.	13.8	479
99	Effect of CO on the Oxidative Addition of Arene Cĩ£¿H Bonds by Cationic Rhodium Complexes. Chemistry - A European Journal, 2010, 16, 328-353.	3.3	49
100	Cationic, Neutral, and Anionic PNP Pd ^{II} and Pt ^{II} Complexes: Dearomatization by Deprotonation and Double-Deprotonation of Pincer Systems. Inorganic Chemistry, 2010, 49, 1615-1625.	4.0	78
101	Lanthanideâ^'Organic Framework of a Rigid Bis-Gd Complex: Composed by Carbonate Ions Spacers. Crystal Growth and Design, 2010, 10, 4235-4239.	3.0	10
102	Synthesis and Reactivity of an Iridium(I) Acetonyl PNP Complex. Experimental and Computational Study of Metalâ^'Ligand Cooperation in Hâ^'H and Câ^'H Bond Activation via Reversible Ligand Dearomatization. Organometallics, 2010, 29, 3817-3827.	2.3	97
103	α-Oligofurans. Journal of the American Chemical Society, 2010, 132, 2148-2150.	13.7	246
104	Formation of Stable <i>trans</i> -Dihydride Ruthenium(II) and 16-Electron Ruthenium(0) Complexes Based on Phosphinite PONOP Pincer Ligands. Reactivity toward Water and Electrophiles. Organometallics, 2009, 28, 4791-4806.	2.3	84
105	Long-Range Through-Bond Heteronuclear Communication in Platinum Complexes. Inorganic Chemistry, 2009, 48, 4021-4030.	4.0	5
106	Structural Basis of Restoring Sequence-Specific DNA Binding and Transactivation to Mutant p53 by Suppressor Mutations. Journal of Molecular Biology, 2009, 385, 249-265.	4.2	52
107	Structure and Reactivity of Rhodium(I) Complexes Based on Electron-Withdrawing Pyrrolyl-PCP-Pincer Ligands. Organometallics, 2009, 28, 523-533.	2.3	27
108	The Impact of Weak CHâ‹â‹Rh Interactions on the Structure and Reactivity of <i>trans</i> â€{Rh(CO) ₂ (phosphine) ₂] ⁺ : An Experimental and Theoretical Examination. Chemistry - A European Journal, 2008, 14, 8183-8194.	3.3	11

#	Article	IF	CITATIONS
109	Pyridine-based SNS-iridium and -rhodium sulfide complexes, including d8–d8 metal–metal interactions in the solid state. Dalton Transactions, 2008, , 3226.	3.3	20
110	Synthesis, Structure, and Reactivity of Rhodium and Iridium Complexes of the Chelating Bis-Sulfoxide <i>t</i> BuSOC ₂ H ₄ SO <i>t</i> Bu. Selective Oâ^H Activation of 2-Hydroxy- <i>iso</i> propyl-pyridine. Inorganic Chemistry, 2008, 47, 6502-6512.	4.0	14
111	Pyridine-Based Sulfoxide Pincer Complexes of Rhodium and Iridium. Organometallics, 2008, 27, 1892-1901.	2.3	30
112	Assembly of Crystalline Halogen-Bonded Materials by Physical Vapor Deposition. Journal of the American Chemical Society, 2008, 130, 8162-8163.	13.7	76
113	Cationic, Neutral, and Anionic Platinum(II) Complexes Based on an Electron-Rich PNN Ligand. New Modes of Reactivity Based on Pincer Hemilability and Dearomatization. Organometallics, 2008, 27, 2627-2634.	2.3	57
114	Competitive Câ^'l versus Câ^'CN Reductive Elimination from a Rh ^{III} Complex. Selectivity is Controlled by the Solvent. Journal of the American Chemical Society, 2008, 130, 14374-14375.	13.7	42
115	Reactivity and stability of platinum(ii) formyl complexes based on PCP-type ligands. The significance of sterics. Dalton Transactions, 2007, , 5692.	3.3	32
116	Mononuclear Rh(II) PNP-Type Complexes. Structure and Reactivity. Inorganic Chemistry, 2007, 46, 10479-10490.	4.0	66
117	Crystal Engineering of "Porphyrin Sieves―Based on Coordination Polymers of Pd- and Pt-tetra(4-carboxyphenyl)porphyrin. Crystal Growth and Design, 2003, 3, 855-863.	3.0	81
118	Crystal engineering of metalloporphyrin assemblies. New supramolecular architectures mediated by bipyridyl ligands. Chemical Communications, 2002, , 1420-1421.	4.1	42
119	Supramolecular porphyrin-based materials. Assembly modes of [5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrinato]zinc with bipyridyl ligands. CrystEngComm, 2002, 4, 296-301.	2.6	29
120	Hydrogen-bonded supramolecular lattice of the 1:3:4 complex between [5,10,15,20-meso-tetrakis(4-hydroxyphenyl)porphyrinato-lº4N]zinc(II), dibenzo-24-crown-8 and methanol. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m344-m346.	0.4	3
121	meso-(4-Nitrophenyl)dipyrromethane. Acta Crystallographica Section E: Structure Reports Online, 2002, 58, 0530-0531.	0.2	3
122	Supramolecular assembly of metalloporphyrins in crystals by axial coordination through amine ligands. Dalton Transactions RSC, 2001, , 2775-2782.	2.3	83
123	Porphyrin sieves. Designing open networks of tetra(carboxyphenyl)porphyrins by extended coordination through sodium ion auxiliaries. New Journal of Chemistry, 2001, 25, 899-904.	2.8	39
124	[5,10,15,20-meso-Tetrakis(2-thienyl)porphyrinato-κ4N]copper(II). Acta Crystallographica Section E: Structure Reports Online, 2001, 57, m346-m348.	0.2	10
125	Crystal Engineering of 2-D and 3-D Multiporphyrin Architectures â^' The Versatile Topologies of Tetracarboxyphenylporphyrin-Based Materials. European Journal of Inorganic Chemistry, 2001, 2001, 2515-2523.	2.0	59
126	Crystal Engineering of Metalloporphyrin Zeolite Analogues. Angewandte Chemie - International Edition, 2000, 39, 1288-1292.	13.8	149

#	Article	IF	CITATIONS
127	New effective synthons for supramolecular self-assembly of meso-carboxyphenylporphyrins. Chemical Communications, 2000, , 585-586.	4.1	52
128	From porphyrin sponges to porphyrin sieves: a unique crystalline lattice of aquazinc tetra(4-carboxyphenyl)porphyrin with nanosized channels. Chemical Communications, 1999, , 1961-1962.	4.1	73
129	Solid-state supramolecular chemistry of porphyrins. Stacked and layered heterogeneous aggregation modes of tetraarylporphyrins with crown ethers. New Journal of Chemistry, 1999, 23, 885-890.	2.8	49
130	Chemical Modifications Suppress Anharmonic Effects in the Lattice Dynamics of Organic Semiconductors. ACS Materials Au, 0, , .	6.0	4