
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706124/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Morphological variability of the plantaris muscle origin in human fetuses. Annals of Anatomy, 2022,<br>239, 151794.                                                                                                                                            | 1.9 | 6         |
| 2  | The arteries of the musculoskeletal system of siamangs, and a comparison with other hylobatids, greater apes, and humans. Journal of Morphology, 2022, 283, 932-944.                                                                                           | 1.2 | 0         |
| 3  | The Visible Ape Project: a free, comprehensive, webâ€based anatomical atlas designed to raise public<br>awareness about apes. FASEB Journal, 2022, 36, .                                                                                                       | 0.5 | 0         |
| 4  | Visual Depictions of Our Evolutionary Past: A Broad Case Study Concerning the Need for Quantitative<br>Methods of Soft Tissue Reconstruction and Art-Science Collaborations. Frontiers in Ecology and<br>Evolution, 2021, 9, .                                 | 2.2 | 9         |
| 5  | Anatomical comparison across heads, fore―and hindlimbs in mammals using network models. Journal of Anatomy, 2021, 239, 12-31.                                                                                                                                  | 1.5 | 5         |
| 6  | The Visible Ape Project: A free, comprehensive, webâ€based anatomical atlas for scientists and veterinarians designed to raise public awareness about apes. Evolutionary Anthropology, 2021, 30, 160-170.                                                      | 3.4 | 2         |
| 7  | Facial musculature in naked moleâ€rats ( <i>Heterocephalus glaber</i> ). FASEB Journal, 2021, 35, .                                                                                                                                                            | 0.5 | 0         |
| 8  | Evolution, Homology, and Development of Tetrapod Limb Muscles. Diversity, 2021, 13, 393.                                                                                                                                                                       | 1.7 | 4         |
| 9  | Morphological variability of the fibularis longus tendon in human fetuses. Annals of Anatomy, 2021, 239, 151838.                                                                                                                                               | 1.9 | 2         |
| 10 | Comparative development of limb musculature in phylogenetically and ecologically divergent lizards.<br>Developmental Dynamics, 2021, , .                                                                                                                       | 1.8 | 3         |
| 11 | Evolution of Hindlimb Muscle Anatomy Across the Tetrapod Waterâ€toâ€Land Transition, Including<br>Comparisons With Forelimb Anatomy. Anatomical Record, 2020, 303, 218-234.                                                                                    | 1.4 | 20        |
| 12 | Not deconstructing serial homology, but instead, the a priori assumption that it generally involves<br>ancestral anatomical similarity: An answer to Kuznetsov's paper. Journal of Morphology, 2020, 281,<br>1628-1633.                                        | 1.2 | 1         |
| 13 | Deconstructing the longâ€standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. Journal of Morphology, 2020, 281, 1110-1132.                                                             | 1.2 | 10        |
| 14 | Extensor Indicis Radialis and Extensor Medii Proprius Associated with an Unknown Fibromuscular<br>Slip: a Case Report. SN Comprehensive Clinical Medicine, 2020, 2, 2456-2459.                                                                                 | 0.6 | 3         |
| 15 | Hiding in Plain Sightâ€ancient Chinese anatomy. Anatomical Record, 2020, , .                                                                                                                                                                                   | 1.4 | 11        |
| 16 | Introduction to Evolutionary Developmental Pathology, or Evo-Devo-Path: on Neodarwinism, Natural<br>Mutants, Hopeful Monsters, Syndromes, Genomics, Variations, Humans, Apes, Chameleons, and<br>Dinosaurs. Current Molecular Biology Reports, 2020, 6, 11-15. | 1.6 | 4         |
| 17 | Quasi-religious Belief in Darwin and Darwinism: "Straw-Men―Scientist Believers Everywhere. Current<br>Molecular Biology Reports, 2020, 6, 16-31.                                                                                                               | 1.6 | 4         |
| 18 | Muscles Lost in Our Adult Primate Ancestors Still Imprint in Us: on Muscle Evolution, Development,<br>Variations, and Pathologies. Current Molecular Biology Reports, 2020, 6, 32-50.                                                                          | 1.6 | 13        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cranial or postcranial—Dual origin of the pectoral appendage of vertebrates combining the finâ€fold<br>and gillâ€arch theories?. Developmental Dynamics, 2020, 249, 1182-1200.                                                 | 1.8  | 12        |
| 20 | Musculature of the head and neck in naked moleâ€rats ( <i>Heterocephalus glaber</i> ). FASEB Journal, 2020, 34, 1-1.                                                                                                           | 0.5  | 0         |
| 21 | Comparative anatomy of the fin muscles of non-sarcopterygian fishes, with notes on homology and evolution. Annals of Anatomy, 2020, 230, 151507.                                                                               | 1.9  | 1         |
| 22 | Development of human limb muscles based on whole-mount immunostaining and the links between ontogeny and evolution. Development (Cambridge), 2019, 146, .                                                                      | 2.5  | 38        |
| 23 | Human enhancement. Evolution, Medicine and Public Health, 2019, 2019, 183-189.                                                                                                                                                 | 2.5  | 20        |
| 24 | Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head Muscles.<br>Fascinating Life Sciences, 2019, , 1-22.                                                                                          | 0.9  | 0         |
| 25 | The Origin and Evolution of Mammalian Head Muscles with Special Emphasis on the Facial Myology of<br>Primates and Modern Humans. Fascinating Life Sciences, 2019, , 253-293.                                                   | 0.9  | 3         |
| 26 | Evolution of facial muscle anatomy in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14677-14681.                                                                           | 7.1  | 68        |
| 27 | First use of anatomical networks to study modularity and integration of heads, forelimbs and<br>hindlimbs in abnormal anencephalic and cyclopic vs normal human development. Scientific Reports,<br>2019, 9, 7821.             | 3.3  | 14        |
| 28 | Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs. Science<br>Advances, 2019, 5, eaau7459.                                                                                                   | 10.3 | 18        |
| 29 | Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish,<br>with notes on evolutionary developmental pathology (Evo-Devo-Path). Scientific Reports, 2019, 9, 5413.                 | 3.3  | 11        |
| 30 | Unique skull network complexity of Tyrannosaurus rex among land vertebrates. Scientific Reports,<br>2019, 9, 1520.                                                                                                             | 3.3  | 20        |
| 31 | Radial polydactyly: putting together evolution, development and clinical anatomy. Journal of Hand<br>Surgery: European Volume, 2019, 44, 51-58.                                                                                | 1.0  | 11        |
| 32 | Musculoskeletal study of cebocephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution and human pathologies. Scientific Reports, 2019, 9, 991.                                    | 3.3  | 4         |
| 33 | Primate modularity and evolution: first anatomical network analysis of primate head and neck<br>musculoskeletal system. Scientific Reports, 2018, 8, 2341.                                                                     | 3.3  | 22        |
| 34 | Where is, in 2017, the evo in evoâ€devo (evolutionary developmental biology)?. Journal of Experimental<br>Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 15-22.                                             | 1.3  | 7         |
| 35 | Anatomical network analysis of the musculoskeletal system reveals integration loss and parcellation<br>boost during the fins-to-limbs transition. Evolution; International Journal of Organic Evolution,<br>2018, 72, 601-618. | 2.3  | 15        |
| 36 | An untold story in biology: the historical continuity of evolutionary ideas of Muslim scholars from the 8th century to Darwin's time. Journal of Biological Education, 2018, 52, 3-17.                                         | 1.5  | 10        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Links between the discovery of primates and anatomical comparisons with humans, the chain of being, our place in nature, and racism. Journal of Morphology, 2018, 279, 472-493.                                               | 1.2  | 13        |
| 38 | Comparative anatomy of zebrafish paired and median fin muscles: basis for functional, developmental, and macroevolutionary studies. Journal of Anatomy, 2018, 232, 186-199.                                                   | 1.5  | 12        |
| 39 | Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the<br>finsâ€ŧoâ€limbs transition. Biological Reviews, 2018, 93, 1077-1107.                                                             | 10.4 | 34        |
| 40 | Neural crest and the patterning of vertebrate craniofacial muscles. Genesis, 2018, 56, e23097.                                                                                                                                | 1.6  | 39        |
| 41 | Development of zebrafish paired and median fin musculature: basis for comparative, developmental, and macroevolutionary studies. Scientific Reports, 2018, 8, 14187.                                                          | 3.3  | 16        |
| 42 | Development of Head Muscles in Fishes and Notes on Phylogeny-Ontogeny Links. , 2018, , 172-187.                                                                                                                               |      | 1         |
| 43 | First Detailed Anatomical Study of Bonobos Reveals Intra-Specific Variations and Exposes Just-So<br>Stories of Human Evolution, Bipedalism, and Tool Use. Frontiers in Ecology and Evolution, 2018, 6, .                      | 2.2  | 6         |
| 44 | First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans. Scientific Reports, 2018, 8, 6885.                                                             | 3.3  | 6         |
| 45 | Understanding the Development, Variations, and Defects of the Muscular System in Normal Human<br>Embryos, Fetuses, and Newborns. FASEB Journal, 2018, 32, 643.2.                                                              | 0.5  | 0         |
| 46 | Abnormal development of the paired and median fins in the hyperthyroidism case series of the zebrafish ( Danio rerio ). FASEB Journal, 2018, 32, 777.2.                                                                       | 0.5  | 0         |
| 47 | Comparative anatomy and development of zebrafish fin muscles: basis for functional, developmental, and macroevolutionary studies. FASEB Journal, 2018, 32, 777.1.                                                             | 0.5  | 0         |
| 48 | Abnormal Development of Human Musculature: Linking Development, Anatomical Variations and Defects, Atavisms, Order and Chaos and Medicine. FASEB Journal, 2018, 32, 775.3.                                                    | 0.5  | 0         |
| 49 | Evolution Driven by Organismal Behavior. , 2017, , .                                                                                                                                                                          |      | 20        |
| 50 | Comparative musculoskeletal anatomy of chameleon limbs, with implications for the evolution of arboreal locomotion in lizards and for teratology. Journal of Morphology, 2017, 278, 1241-1261.                                | 1.2  | 14        |
| 51 | Bonobo anatomy reveals stasis and mosaicism in chimpanzee evolution, and supports bonobos as the<br>most appropriate extant modeï»،وا for the common ancestor of chimpanzees and humans. Scientific<br>Reports, 2017, 7, 608. | 3.3  | 40        |
| 52 | A detailed musculoskeletal study of a fetus with anencephaly and spina bifida (craniorachischisis),<br>and comparison with other cases of human congenital malformations. Journal of Anatomy, 2017, 230,<br>842-858.          | 1.5  | 6         |
| 53 | Multiple exaptations leading to fish sound production. Fish and Fisheries, 2017, 18, 958-966.                                                                                                                                 | 5.3  | 27        |
| 54 | Musculoskeletal anatomy of the pelvic fin of <i>Polypterus</i> : implications for phylogenetic<br>distribution and homology of pre―and postaxial pelvic appendicular muscles. Journal of Anatomy, 2017,<br>230, 532-541.      | 1.5  | 10        |

| #  | Article                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparison of musculoskeletal networks of the primate forelimb. Scientific Reports, 2017, 7, 10520.                                                                                                                                                                                                         | 3.3 | 13        |
| 56 | Muscle development in the shark Scyliorhinus canicula: implications for the evolution of the gnathostome head and paired appendage musculature. Frontiers in Zoology, 2017, 14, 31.                                                                                                                         | 2.0 | 20        |
| 57 | PhyloOncology: Understanding cancer through phylogenetic analysis. Biochimica Et Biophysica Acta:<br>Reviews on Cancer, 2017, 1867, 101-108.                                                                                                                                                                | 7.4 | 22        |
| 58 | Dinosaurs, Chameleons, Humans, and Evoâ€Devo Path: Linking Étienne Geoffroy's Teratology,<br>Waddington's Homeorhesis, Alberch's Logic of "Monsters,―and Goldschmidt Hopeful "Monsters―<br>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 207-229.               | 1.3 | 22        |
| 59 | An untold story: The important contributions of Muslim scholars for the understanding of human anatomy. Anatomical Record, 2017, 300, 986-1008.                                                                                                                                                             | 1.4 | 18        |
| 60 | Etho-Eco-Morphological Mismatches, an Overlooked Phenomenon in Ecology, Evolution and Evo-Devo<br>That Supports ONCE (Organic Nonoptimal Constrained Evolution) and the Key Evolutionary Role of<br>Organismal Behavior. Frontiers in Ecology and Evolution, 2017, 5, .                                     | 2.2 | 19        |
| 61 | Photographic and Descriptive Musculoskeletal Atlas of Bonobos. , 2017, , .                                                                                                                                                                                                                                  |     | 14        |
| 62 | Introduction, Aims, Methodology and Materials. , 2017, , 1-4.                                                                                                                                                                                                                                               |     | 0         |
| 63 | Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via<br>Assimilation of Dissimilar Units. Frontiers in Ecology and Evolution, 2016, 4, .                                                                                                                           | 2.2 | 15        |
| 64 | Links between Evolution, Development, Human Anatomy, Pathology, and Medicine, with A Proposition<br>of A Reâ€defined Anatomical Position and Notes on Constraints and Morphological "Imperfectionsâ€.<br>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 215-224. | 1.3 | 8         |
| 65 | Characteristic tetrapod musculoskeletal limb phenotype emerged more than 400 MYA in basal<br>lobe-finned fishes. Scientific Reports, 2016, 6, 37592.                                                                                                                                                        | 3.3 | 19        |
| 66 | Are more diverse parts of the mammalian skull moreÂlabile?. Ecology and Evolution, 2016, 6, 2318-2324.                                                                                                                                                                                                      | 1.9 | 21        |
| 67 | Anatomy, Function, and Evolution of the Primate Hand Musculature. Developments in Primatology, 2016, , 155-193.                                                                                                                                                                                             | 0.1 | 48        |
| 68 | Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity,<br>Bauplan, and "Scala Naturae― Anatomical Record, 2016, 299, 1224-1255.                                                                                                                                   | 1.4 | 36        |
| 69 | Where is the Evo in Evoâ€Đevo (evolutionary developmental biology)?. Journal of Experimental Zoology<br>Part B: Molecular and Developmental Evolution, 2016, 326, 9-18.                                                                                                                                     | 1.3 | 23        |
| 70 | Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Developmental Dynamics, 2015, 244, 1046-1057.                                                                                                                                       | 1.8 | 18        |
| 71 | Anatomical networks reveal the musculoskeletal modularity of the human head. Scientific Reports, 2015, 5, 8298.                                                                                                                                                                                             | 3.3 | 57        |
| 72 | Musculoskeletal anatomical changes that accompany limb reduction in lizards. Journal of<br>Morphology, 2015, 276, 1290-1310.                                                                                                                                                                                | 1.2 | 11        |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18. Journal of Anatomy, 2015, 227, 255-267.                                           | 1.5  | 20        |
| 74 | Specialize or risk disappearance – empirical evidence of anisomerism based on comparative and<br>developmental studies of gnathostome head and limb musculature. Biological Reviews, 2015, 90,<br>964-978.                                                             | 10.4 | 10        |
| 75 | On the serial homology of the pectoral and pelvic girdles of tetrapods. Evolution; International<br>Journal of Organic Evolution, 2015, 69, 2543-2555.                                                                                                                 | 2.3  | 35        |
| 76 | Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull. PLoS ONE, 2015, 10, e0127653.                                                                                                                   | 2.5  | 32        |
| 77 | Muscles of Chondrichthyan Paired Appendages: Comparison With Osteichthyans, Deconstruction of<br>the Fore–Hindlimb Serial Homology Dogma, and New Insights on the Evolution of the Vertebrate Neck.<br>Anatomical Record, 2015, 298, 513-530.                          | 1.4  | 30        |
| 78 | Finding Our Way through Phenotypes. PLoS Biology, 2015, 13, e1002033.                                                                                                                                                                                                  | 5.6  | 178       |
| 79 | Comparative Anatomy of Primates. , 2015, , 43-55.                                                                                                                                                                                                                      |      | 0         |
| 80 | A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature, 2015, 520, 466-473.                                                                                                                                                                       | 27.8 | 201       |
| 81 | Towards the resolution of a longâ€standing evolutionary question: muscle identity and attachments<br>are mainly related to topological position and not to primordium or homeotic identity of digits.<br>Journal of Anatomy, 2015, 226, 523-529.                       | 1.5  | 26        |
| 82 | Evolutionary developmental pathology and anthropology: A new field linking development,<br>comparative anatomy, human evolution, morphological variations and defects, and medicine.<br>Developmental Dynamics, 2015, 244, 1357-1374.                                  | 1.8  | 39        |
| 83 | Is evolutionary biology becoming too politically correct? A reflection on <i>the scala naturae</i> ,<br>phylogenetically basal clades, anatomically plesiomorphic taxa, and â€`lower' animals. Biological<br>Reviews, 2015, 90, 502-521.                               | 10.4 | 19        |
| 84 | Muscular and Skeletal Anomalies in Human Trisomy in an Evoâ€Đevo Context Using 3â€Đ Imaging and<br>Anatomical Dissections, with Notes on Down Syndrome, Cyclopia and Medical Implications. FASEB<br>Journal, 2015, 29, 870.1.                                          | 0.5  | 1         |
| 85 | Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and<br>Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy. PLoS<br>ONE, 2015, 10, e0140030.                                             | 2.5  | 28        |
| 86 | The End of an Old Dogma with Crucial Implications for Medical and Biology Students and for<br>Medicine: regenerative, Developmental, Paleontological and Evolutionary Studies Contradict the<br>Foreâ€hindlimb Serial Homology. FASEB Journal, 2015, 29, 343.5.        | 0.5  | 1         |
| 87 | Cardiopharyngeal field, Head & Heart Muscle Development, and Associated Syndromes in Humans.<br>FASEB Journal, 2015, 29, 872.3.                                                                                                                                        | 0.5  | 0         |
| 88 | Cephalic Muscle Evolution in Chordates. FASEB Journal, 2015, 29, 345.4.                                                                                                                                                                                                | 0.5  | 0         |
| 89 | An Untold Story: The Important Contributions of Muslim Scholars for the Discovery of Human<br>Anatomy and the History of Evolutionary Thinking. FASEB Journal, 2015, 29, 549.9.                                                                                        | 0.5  | 0         |
| 90 | Development of fore―and hindlimb muscles in GFPâ€transgenic axolotls: Morphogenesis, the tetrapod<br>bauplan, and new insights on the Forelimbâ€Hindlimb Enigma. Journal of Experimental Zoology Part B:<br>Molecular and Developmental Evolution, 2014, 322, 106-127. | 1.3  | 32        |

| #   | Article                                                                                                                                                                                                                                                                                                                     | IF               | CITATIONS            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 91  | Is salamander hindlimb regeneration similar to that of the forelimb? Anatomical and morphogenetic<br>analysis of hindlimb muscle regeneration in <scp>GFP</scp> â€transgenic axolotls as a basis for<br>regenerative and developmental studies. Journal of Anatomy, 2014, 224, 459-468.                                     | 1.5              | 14                   |
| 92  | Is Salamander Limb Regeneration Really Perfect? Anatomical and Morphogenetic Analysis of Forelimb<br>Muscle Regeneration in GFPâ€Transgenic Axolotls as a Basis for Regenerative, Developmental, and<br>Evolutionary Studies. Anatomical Record, 2014, 297, 1076-1089.                                                      | 1.4              | 25                   |
| 93  | Cranial muscle development in frogs with different developmental modes: Direct development versus biphasic development. Journal of Morphology, 2014, 275, 398-413.                                                                                                                                                          | 1.2              | 33                   |
| 94  | Development of fore―and hindlimb muscles in frogs: Morphogenesis, homeotic transformations, digit<br>reduction, and the forelimb–hindlimb enigma. Journal of Experimental Zoology Part B: Molecular and<br>Developmental Evolution, 2014, 322, 86-105.                                                                      | 1.3              | 48                   |
| 95  | Do Correlation Patterns Reflect the Role of Development in Morphological Evolution?. Evolutionary Biology, 2014, 41, 494-502.                                                                                                                                                                                               | 1.1              | 11                   |
| 96  | The Anatomy and Ontogeny of the Head, Neck, Pectoral, and Upper Limb Muscles of <i>Lemur catta</i><br>and <i>Propithecus coquereli</i> (Primates): Discussion on the Parallelism Between Ontogeny and<br>Phylogeny and Implications for Evolutionary and Developmental Biology. Anatomical Record, 2014,<br>297, 1435-1453. | 1.4              | 12                   |
| 97  | Comparative Anatomy, Evolution, and Homologies of Tetrapod Hindlimb Muscles, Comparison with<br>Forelimb Muscles, and Deconstruction of the Forelimbâ€Hindlimb Serial Homology Hypothesis.<br>Anatomical Record, 2014, 297, 1047-1075.                                                                                      | 1.4              | 59                   |
| 98  | Cephalic muscles of Cyclostomes (hagfishes and lampreys) and Chondrichthyes (sharks, rays and) Tj ETQq0 0 0 J<br>Journal of the Linnean Society, 2014, 172, 771-802.                                                                                                                                                        | rgBT /Ove<br>2.3 | rlock 10 Tf 50<br>20 |
| 99  | Plain faces are more expressive: comparative study of facial colour, mobility and musculature in primates. Biology Letters, 2014, 10, 20140275.                                                                                                                                                                             | 2.3              | 23                   |
| 100 | Cranial Muscle Development in the Model Organism <i>Ambystoma mexicanum</i> : Implications for<br>Tetrapod and Vertebrate Comparative and Evolutionary Morphology and Notes on Ontogeny and<br>Phylogeny. Anatomical Record, 2013, 296, 1031-1048.                                                                          | 1.4              | 33                   |
| 101 | First comparative study of primate morphological and molecular evolutionary rates including muscle data: implications for the tempo and mode of primate and human evolution. Journal of Anatomy, 2013, 222, 410-418.                                                                                                        | 1.5              | 6                    |
| 102 | New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma. Biological Reviews, 2013, 88, 196-214.                                                                                                                                                                         | 10.4             | 52                   |
| 103 | "Pollical palmar interosseous muscle―( <i>musculus adductor pollicis accessorius</i> ): Attachments,<br>innervation, variations, phylogeny, and implications for human evolution and medicine. Journal of<br>Morphology, 2013, 274, 275-293.                                                                                | 1.2              | 12                   |
| 104 | The broader evolutionary lessons to be learned from a comparative and phylogenetic analysis of primate muscle morphology. Biological Reviews, 2013, 88, 988-1001.                                                                                                                                                           | 10.4             | 25                   |
| 105 | Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent proteinâ€transgenic<br>axolotls and comparison with other tetrapods including humans: a basis for regenerative,<br>evolutionary and developmental studies. Journal of Anatomy, 2012, 221, 622-635.                                           | 1.5              | 26                   |
| 106 | The Head and Neck Muscles of the Serval and Tiger: Homologies, Evolution, and Proposal of a<br>Mammalian and a Veterinary Muscle Ontology. Anatomical Record, 2012, 295, 2157-2178.                                                                                                                                         | 1.4              | 18                   |
| 107 | VIOLATION OF DOLLO'S LAW: EVIDENCE OF MUSCLE REVERSIONS IN PRIMATE PHYLOGENY AND THEIR<br>IMPLICATIONS FOR THE UNDERSTANDING OF THE ONTOGENY, EVOLUTION, AND ANATOMICAL VARIATIONS<br>OF MODERN HUMANS. Evolution; International Journal of Organic Evolution, 2012, 66, 3267-3276.                                         | 2.3              | 31                   |
| 108 | Evolution and homologies of primate and modern human hand and forearm muscles, with notes on thumb movements and tool use. Journal of Human Evolution, 2012, 63, 64-78.                                                                                                                                                     | 2.6              | 80                   |

Rui Dioco

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. Journal of Anatomy, 2011, 219, 273-359.                                                         | 1.5 | 142       |
| 110 | Expression of Myosin Heavy Chain Isoforms in the Supraspinatus Muscle of Different Primate Species:<br>Implications for the Study of the Adaptation of Primate Shoulder Muscles to Different Locomotor<br>Modes. International Journal of Primatology, 2011, 32, 931-944.        | 1.9 | 10        |
| 111 | Evolution of the Muscles of Facial Expression in a Monogamous Ape: Evaluating the Relative<br>Influences of Ecological and Phylogenetic Factors in Hylobatids. Anatomical Record, 2011, 294, 645-663.                                                                            | 1.4 | 29        |
| 112 | Jaw Adductor Muscles across Lepidosaurs: A Reappraisal. Anatomical Record, 2011, 294, 1765-1782.                                                                                                                                                                                 | 1.4 | 24        |
| 113 | Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles. Journal of Anatomy, 2010, 217, 536-573.                                                                     | 1.5 | 60        |
| 114 | Comparative Anatomy, Anthropology and Archaeology as Case Studies on the Influence of Human<br>Biases in Natural Sciences: The Origin of â€~Humans', of â€~Behaviorally Modern Humans' and of â€~Fully<br>Civilized Humans'. The Open Anatomy Journal, 2010, 2, 86-97.           | 0.5 | 5         |
| 115 | Human muscular variations: comparative, evolutionary and developmental perspectives. FASEB<br>Journal, 2010, 24, 61.4.                                                                                                                                                           | 0.5 | 1         |
| 116 | The head and neck muscles of the Philippine colugo (Dermoptera: <i>Cynocephalus volans</i> ), with a comparison to treeâ€shrews, primates, and other mammals. Journal of Morphology, 2009, 270, 14-51.                                                                           | 1.2 | 32        |
| 117 | Prebiotic world, macroevolution, and Darwin's theory: a new insight. Biology and Philosophy, 2009, 24, 119-128.                                                                                                                                                                  | 1.4 | 3         |
| 118 | From fish to modern humans – comparative anatomy, homologies and evolution of the pectoral and forelimb musculature. Journal of Anatomy, 2009, 214, 694-716.                                                                                                                     | 1.5 | 80        |
| 119 | On the origin, homologies and evolution of primate facial muscles, with a particular focus on hominoids and a suggested unifying nomenclature for the facial muscles of the Mammalia. Journal of Anatomy, 2009, 215, 300-319.                                                    | 1.5 | 87        |
| 120 | Comparative phylogeography of the Yellow River schizothoracine fishes (Cyprinidae): Vicariance,<br>expansion, and recent coalescence in response to the Quaternary environmental upheaval in the<br>Tibetan Plateau. Molecular Phylogenetics and Evolution, 2009, 53, 1025-1031. | 2.7 | 24        |
| 121 | Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods. BMC Developmental Biology, 2008, 8, 24.                                                                                 | 2.1 | 76        |
| 122 | From fish to modern humans – comparative anatomy, homologies and evolution of the head and neck musculature. Journal of Anatomy, 2008, 213, 391-424.                                                                                                                             | 1.5 | 85        |
| 123 | Comparative anatomy, homologies and evolution of mandibular, hyoid and hypobranchial muscles of bony fish and tetrapods: a new insight. Animal Biology, 2008, 58, 123-172.                                                                                                       | 1.0 | 20        |
| 124 | Cephalic and pectoral girdle muscles of the clupeiform Denticeps clupeoides, with comments on the<br>homologies and plesiomorphic states of these muscles within the Otocephala (Teleostei). Animal<br>Biology, 2008, 58, 41-66.                                                 | 1.0 | 1         |
| 125 | On the cephalic and pectoral girdle muscles of the deep sea fish Alepocephalus rostratus, with comments on the functional morphology and phylogenetic relationships of the Alepocephaloidei (Teleostei). Animal Biology, 2008, 58, 23-40.                                        | 1.0 | 6         |
| 126 | Teleostean Phylogeny Based on Osteological and Myological Characters. International Journal of<br>Morphology, 2008, 26, .                                                                                                                                                        | 0.2 | 17        |

| #   | Article                                                                                                                                                                                                                                                                                                                           | IF                  | CITATIONS     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
| 127 | Comparative anatomy, homologies and evolution of the pectoral muscles of bony fish and tetrapods:<br>A new insight. Journal of Morphology, 2007, 268, 504-517.                                                                                                                                                                    | 1.2                 | 41            |
| 128 | Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes).<br>Molecular Phylogenetics and Evolution, 2007, 42, 854-862.                                                                                                                                                                       | 2.7                 | 141           |
| 129 | MtDNA phylogeny provides evidence of generic polyphyleticism for East Asian bagrid catfishes.<br>Hydrobiologia, 2007, 579, 147-159.                                                                                                                                                                                               | 2.0                 | 20            |
| 130 | Osteology and Myology of the Cephalic Region and Pectoral Girdle of Heptapterus mustelinus,<br>Comparison With Other Heptapterins, and Discussion on the Synapomorphies and Phylogenetic<br>Relationships of the Heptapterinae and the Pimelodidae (Teleostei: Siluriformes). International Journal<br>of Morphology, 2007, 25, . | 0.2                 | 3             |
| 131 | Homoplasies, Consistency Index and the Complexity of Morphological Evolution: Catfishes as a Case<br>Study for General Discussions on Phylogeny and Macroevolution. International Journal of<br>Morphology, 2007, 25, .                                                                                                           | 0.2                 | 2             |
| 132 | Osteology and Myology of the Cephalic Region and Pectoral Girdle of Pangasius macronema, With a<br>Discussion on the Synapomorphies and Phylogenetic Relationships of the Pangasiidae (Teleostei:) Tj ETQq0 0 0 r                                                                                                                 | gB <b>ō.</b> ‡Overl | lock 10 Tf 50 |
| 133 | Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): A<br>new insight. Gene, 2006, 370, 113-124.                                                                                                                                                                                    | 2.2                 | 84            |
| 134 | Osteology and myology of the cephalic region and pectoral girdle of the South African catfish<br>Austroglanis gilli, with comments on the autapomorphies and phylogenetic relationships of the<br>Austroglanididae (Teleostei: Siluriformes). Animal Biology, 2006, 56, 39-62.                                                    | 1.0                 | 9             |
| 135 | Cordelia's Dilemma, Historical Bias, and General Evolutionary Trends: Catfishes as a Case Study for<br>General Discussions on Phylogeny and Macroevolution. International Journal of Morphology, 2006,<br>24, .                                                                                                                   | 0.2                 | 5             |
| 136 | Evolutionary convergences and parallelisms: &their theoretical differences and the difficulty &of discriminating them in a practical &phylogenetic context. Biology and Philosophy, 2005, 20, 735-744.                                                                                                                            | 1.4                 | 20            |
| 137 | Osteology and myology of the cephalic region and pectoral girdle of Pimelodus blochii , comparison with other pimelodines, and comments on the synapomorphies and phylogenetic relationships of the Pimelodinae (Ostariophysi: Siluriformes). European Journal of Morphology, 2005, 42, 115-126.                                  | 0.8                 | 6             |
| 138 | On the osteology and myology of the cephalic region and pectoral girdle of Franciscodoras<br>marmoratus (LA¼tken 1874), comparison with other doradids, and comments on the synapomorphies<br>and phylogenetic relationships of the Doradidae (Teleostei: Siluriformes). Animal Biology, 2004, 54,<br>175-193.                    | 1.0                 | 11            |
| 139 | On the osteology and myology of the cephalic region and pectoral girdle of Chaca bankanensis<br>Bleeker 1852, with comments on the autapomorphies and phylogenetic relationships of the Chacidae<br>(Teleostei: Siluriformes). Animal Biology, 2004, 54, 159-174.                                                                 | 1.0                 | 9             |
| 140 | Osteology and myology of the cephalic region and pectoral girdle of Batrochoglanis raninus, with a<br>discussion on the synapomorphies and phylogenetic relationships of the Pseudopimelodinae and<br>Pimelodidae (Teleostei: Siluriformes). Animal Biology, 2004, 54, 261-280.                                                   | 1.0                 | 14            |
| 141 | Phylogeny, origin and biogeography of catfishes: support for a Pangean origin of 'modern teleosts'<br>and reexamination of some Mesozoic Pangean connections between the Gondwanan and Laurasian<br>supercontinents. Animal Biology, 2004, 54, 331-351.                                                                           | 1.0                 | 32            |
| 142 | Muscles versus bones: catfishes as a case study for a discussion on the relative contribution of<br>myological and osteological features in phylogenetic reconstructions. Animal Biology, 2004, 54,<br>373-391.                                                                                                                   | 1.0                 | 27            |
| 143 | Osteology and myology of the cephalic region and pectoral girdle of Schilbe mystus and comparison with other schilbids, with comments on the monophyly and phylogenetic relationships of the Schilbidae (Teleostei: Siluriformes). Animal Biology, 2004, 54, 91-110.                                                              | 1.0                 | 7             |
| 144 | Osteology and myology of the cephalic region and pectoral girdle of Erethistes pusillus , comparison with other erethistids, and comments on the synapomorphies and phylogenetic relationships of the Erethistidae (Teleostei: Siluriformes). Journal of Fish Biology, 2003, 63, 1160-1175.                                       | 1.6                 | 8             |

| #   | Article                                                                                                                                                                                                                                                                                  | IF                | CITATIONS             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|
| 145 | Osteology and myology of the cephalic region and pectoral girdle of Centromochlus heckelii, comparison with other auchenipterids, and comments on the synapomorphies and phylogenetic relationships of the Auchenipteridae (Teleostei: Siluriformes). Animal Biology, 2003, 53, 397-416. | 1.0               | 3                     |
| 146 | On the osteology and myology of the cephalic region and pectoral girdle of Heteropneustes fossilis<br>(Siluriformes: Heteropneustidae), with comments on the phylogenetic relationships between<br>Heteropneustes and the clariid catfishes. Animal Biology, 2003, 53, 379-396.          | 1.0               | 11                    |
| 147 | Catfishes as a case study for discussions on general evolution: the importance of functional uncouplings in morphological macroevolution. European Journal of Morphology, 2003, 41, 139-48.                                                                                              | 0.8               | 4                     |
| 148 | Osteology and myology of the cephalic region and pectoral girdle of the Chinese catfishCranoglanis bouderius, with a discussion on the autapomorphies and phylogenetic relationships of the Cranoglanididae (Teleostei: Siluriformes). Journal of Morphology, 2002, 253, 229-242.        | 1.2               | 20                    |
| 149 | On the osteology and myology of catfish pectoral girdle, with a reflection on catfish (Teleostei:) Tj ETQq1 1 0.784                                                                                                                                                                      | 1314 rgBT<br>1.2  | /Qyerlock 10          |
| 150 | Osteology and myology of the cephalic region and pectoral girdle of Plotosus lineatus, with<br>comments on Plotosidae (Teleostei: Siluriformes) autapomorphies. Journal of Fish Biology, 2001, 59,<br>243-266.                                                                           | 1.6               | 11                    |
| 151 | Osteology and Myology of the Cephalic Region and Pectoral Girdle of Bunocephalus Knerii, and a<br>Discussion On the Phylogenetic Relationships of the Aspredinidae (Teleostei: Siluriformes). Animal<br>Biology, 2001, 51, 457-481.                                                      | 0.4               | 10                    |
| 152 | OSTEOLOGY AND MYOLOGY OF THE CEPHALIC REGION AND PECTORAL GIRDLE OF BUNOCEPHALUS KNERII, AND A DISCUSSION ON THE PHYLOGENETIC RELATIONSHIPS OF THE ASPREDINIDAE (TELEOSTEI:) TJ ETQq $0$ 0 0 r                                                                                           | g <b>BT</b> 4Over | lo <b>¢b</b> 10 Tf 50 |
| 153 | Homologies among different adductor mandibulae sections of teleostean fishes, with special regard to catfishes (Teleostei: Siluriformes). , 2000, 243, 193-208.                                                                                                                          |                   | 34                    |
| 154 | The Structures Associated With Catfish (Teleostei: Siluriformes) Mandibular Barbels: Origin,<br>Anatomy, Function, Taxonomic Distribution, Nomenclature and Synonymy. Animal Biology, 2000, 50,<br>455-478.                                                                              | 0.4               | 12                    |
| 155 | THE ORIGIN AND TRANSFORMATION OF THE PALATINE-MAXILLARY SYSTEM OF CATFISH (TELEOSTEI:) TJ ETQq1 1                                                                                                                                                                                        | 0,784314<br>0.4   | 4 rgBT /Overl         |
| 156 | THE STRUCTURES ASSOCIATED WITH CATFISH (TELEOSTEI: SILURIFORMES) MANDIBULAR BARBELS: ORIGIN, ANATOMY, FUNCTION, TAXONOMIC DISTRIBUTION, NOMENCLATURE AND SYNONYMY. Animal Biology, 2000, 50, 455-478.                                                                                    | 0.4               | 13                    |
| 157 | Morphological Description of the Cephalic Region of Bagrus Docmac, With a Reflection On Bagridae<br>(Teleostei: Siluriformes) Autapomorphies. Animal Biology, 1999, 49, 207-232.                                                                                                         | 0.4               | 12                    |
| 158 | MORPHOLOGICAL DESCRIPTION OF THE CEPHALIC REGION OF BAGRUS DOCMAC, WITH A REFLECTION ON BAGRIDAE (TELEOSTEI: SILURIFORMES) AUTAPOMORPHIES. Animal Biology, 1999, 49, 207-232.                                                                                                            | 0.4               | 11                    |