Janine Reichenbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6706092/publications.pdf

Version: 2024-02-01

66343 56724 8,686 87 42 citations h-index papers

83 g-index 88 88 88 11429 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature Medicine, 2008, 14, 949-953.	30.7	836
2	Gain-of-function human <i>STAT1</i> mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. Journal of Experimental Medicine, 2011, 208, 1635-1648.	8.5	739
3	Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood, 2009, 114, 2619-2622.	1.4	500
4	Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood, 2016, 127, 3154-3164.	1.4	465
5	Mutations in <i>STAT3</i> and <i>IL12RB1</i> impair the development of human IL-17–producing T cells. Journal of Experimental Medicine, 2008, 205, 1543-1550.	8.5	406
6	Revisiting Human IL-12RÎ ² 1 Deficiency. Medicine (United States), 2010, 89, 381-402.	1.0	367
7	Clinical Features and Outcome of Patients With IRAK-4 and MyD88 Deficiency. Medicine (United States), 2010, 89, 403-425.	1.0	366
8	A hypermorphic ll $^{\hat{P}}$ Bl $^{\hat{+}}$ mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. Journal of Clinical Investigation, 2003, 112, 1108-1115.	8.2	325
9	The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nature Immunology, 2010, 11, 836-845.	14.5	295
10	Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-lgE syndrome. Journal of Allergy and Clinical Immunology, 2008, 122, 181-187.	2.9	290
11	Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood, 2010, 116, 1570-1573.	1.4	249
12	Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. Journal of Allergy and Clinical Immunology, 2011, 127, 1243-1252.e7.	2.9	221
13	Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. New England Journal of Medicine, 2016, 374, 1032-1043.	27.0	217
14	Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δsyndrome 2: AÂcohort study. Journal of Allergy and Clinical Immunology, 2016, 138, 210-218.e9.	2.9	215
15	Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. Journal of Cell Biology, 2013, 203, 757-766.	5.2	172
16	Interleukinâ€12 Receptor β1 Deficiency in a Patient with Abdominal Tuberculosis. Journal of Infectious Diseases, 2001, 184, 231-236.	4.0	159
17	Elevated Oxidative Stress in Patients with Ataxia Telangiectasia. Antioxidants and Redox Signaling, 2002, 4, 465-469.	5.4	152
18	Gene Therapy of Chronic Granulomatous Disease: The Engraftment Dilemma. Molecular Therapy, 2011, 19, 28-35.	8.2	147

#	Article	IF	CITATIONS
19	Diagnostic approach to the hyper-IgE syndromes: Immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. Journal of Allergy and Clinical Immunology, 2010, 126, 611-617.e1.	2.9	140
20	Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δSyndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δSyndrome Registry. Frontiers in Immunology, 2018, 9, 543.	4.8	137
21	Bacillus Calmette Guérin triggers the IL-12/IFN-γ axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. European Journal of Immunology, 2004, 34, 3276-3284.	2.9	133
22	Nuclear factor κB essential modulator–deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. Journal of Allergy and Clinical Immunology, 2004, 114, 1456-1462.	2.9	122
23	Identification of Severe Combined Immunodeficiency by T-Cell Receptor Excision Circles Quantification Using Neonatal Guthrie Cards. Journal of Pediatrics, 2009, 155, 829-833.	1.8	108
24	Impaired Interferon Gamma-Mediated Immunity and Susceptibility to Mycobacterial Infection in Childhood. Pediatric Research, 2001, 50, 8-13.	2.3	97
25	Mycobacterial diseases in primary immunodeficiencies. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 503-511.	2.3	94
26	Quantification of \hat{l}^2 -deleting recombination excision circles in Guthrie cards for the identification of early B-cell maturation defects. Journal of Allergy and Clinical Immunology, 2011, 128, 223-225.e2.	2.9	91
27	The NEMO Mutation Creating the Most-Upstream Premature Stop Codon Is Hypomorphic Because of a Reinitiation of Translation. American Journal of Human Genetics, 2006, 78, 691-701.	6.2	89
28	TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials, 2015, 69, 191-200.	11.4	76
29	Actinomyces in Chronic Granulomatous Disease: An Emerging and Unanticipated Pathogen. Clinical Infectious Diseases, 2009, 49, 1703-1710.	5.8	74
30	Hyperinflammation in patients with chronic granulomatous disease leads to impairment of hematopoietic stem cell functions. Journal of Allergy and Clinical Immunology, 2016, 138, 219-228.e9.	2.9	74
31	Immunogenicity and Tolerance of a 7-Valent Pneumococcal Conjugate Vaccine in Nonresponders to the 23-Valent Pneumococcal Vaccine. Infection and Immunity, 2000, 68, 1435-1440.	2.2	72
32	Derivation and Functional Analysis of Patient-Specific Induced Pluripotent Stem Cells as an In Vitro Model of Chronic Granulomatous Disease. Stem Cells, 2012, 30, 599-611.	3.2	69
33	NEMO is a key component of NF-κB– and IRF-3–dependent TLR3-mediated immunity to herpes simplex virus. Journal of Allergy and Clinical Immunology, 2011, 128, 610-617.e4.	2.9	66
34	Immunoglobulin Deficiencies: The B-Lymphocyte Side of DiGeorge Syndrome. Journal of Pediatrics, 2012, 161, 950-953.e1.	1.8	63
35	lkaros family zinc finger 1 regulates dendritic cell development and function in humans. Nature Communications, 2018, 9, 1239.	12.8	62
36	Successful Combination of Sequential Gene Therapy and Rescue Allo-HSCT in Two Children with X-CGD - Importance of Timing. Current Gene Therapy, 2015, 15, 416-427.	2.0	61

#	Article	IF	CITATIONS
37	Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Blood, 2015, 126, 2842-2851.	1.4	58
38	From idiopathic infectious diseases to novel primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2005, 116 , 426 - 430 .	2.9	57
39	Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. Journal of Allergy and Clinical Immunology, 2017, 139, 212-219.e3.	2.9	56
40	Deficiencies in CD4+ and CD8+ T cell subsets in ataxia telangiectasia. Clinical and Experimental Immunology, 2002, 129, 125-132.	2.6	54
41	Growth factor deficiency in patients with ataxia telangiectasia. Clinical and Experimental Immunology, 2005, 140, 517-519.	2.6	50
42	Clinical, molecular, and cellular immunologic findings in patients with SP110-associated veno-occlusive disease with immunodeficiency syndrome. Journal of Allergy and Clinical Immunology, 2012, 130, 735-742.e6.	2.9	49
43	The Swiss National Registry for Primary Immunodeficiencies: report on the first 6 years' activity from 2008 to 2014. Clinical and Experimental Immunology, 2015, 182, 45-50.	2.6	46
44	The European Society for Immunodeficiencies (ESID) registry 2014. Clinical and Experimental Immunology, 2014, 178, 18-20.	2.6	43
45	Heterozygous signal transducer and activator of transcription 3 mutations in hyper-IgE syndrome result in altered B-cell maturation. Journal of Allergy and Clinical Immunology, 2012, 129, 559-562.e2.	2.9	41
46	Extracerebellar MRIâ€"Lesions in Ataxia Telangiectasia Go Along with Deficiency of the GH/IGF-1 Axis, Markedly Reduced Body Weight, High Ataxia Scores and Advanced Age. Cerebellum, 2010, 9, 190-197.	2.5	35
47	Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction. Journal of Clinical Immunology, 2019, 39, 298-308.	3.8	31
48	Fatal Neonatal-Onset Mitochondrial Respiratory Chain Disease with T Cell Immunodeficiency. Pediatric Research, 2006, 60, 321-326.	2.3	30
49	IMMUNOGENICITY OF THE SEVEN VALENT PNEUMOCOCCAL CONJUGATE VACCINE IN PATIENTS WITH ATAXIA-TELANGIECTASIA. Pediatric Infectious Disease Journal, 2004, 23, 269-270.	2.0	29
50	First Successful Bone Marrow Transplantation for X-linked Chronic Granulomatous Disease by Using Preimplantation Female Gender Typing and HLA Matching. Pediatrics, 2008, 122, e778-e782.	2.1	26
51	Modern management of primary Bâ€cell immunodeficiencies. Pediatric Allergy and Immunology, 2011, 22, 758-769.	2.6	23
52	Gene Therapy for Chronic Granulomatous Disease: Current Status and Future Perspectives. Current Gene Therapy, 2014, 14, 447-460.	2.0	21
53	Autosomal-dominant primary immunodeficiencies. Current Opinion in Hematology, 2005, 12, 22-30.	2.5	20
54	Intact indoleamine 2,3-dioxygenase activity in human chronic granulomatous disease. Clinical Immunology, 2010, 137, 1-4.	3.2	19

#	Article	IF	CITATIONS
55	Human miR223 Promoter as a Novel Myelo-Specific Promoter for Chronic Granulomatous Disease Gene Therapy. Human Gene Therapy Methods, 2013, 24, 151-159.	2.1	18
56	Non-invasive near-infrared fluorescence imaging of the neutrophil response in a mouse model of transient cerebral ischaemia. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2833-2847.	4.3	18
57	Swiss newborn screening for severe T and B cell deficiency with a combined TREC/KREC assay – management recommendations. Swiss Medical Weekly, 2020, 150, w20254.	1.6	17
58	Persistent mammalian orthoreovirus, coxsackievirus and adenovirus co-infection in a child with a primary immunodeficiency detected by metagenomic sequencing: a case report. BMC Infectious Diseases, 2018, 18, 33.	2.9	16
59	CRISPR/Cas9-generated p47phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development. Scientific Reports, 2017, 7, 44187.	3.3	15
60	High Levels of IL-18 and IFN- \hat{l}^3 in Chronically Inflamed Tissue in Chronic Granulomatous Disease. Frontiers in Immunology, 2019, 10, 2236.	4.8	15
61	Impaired interferon-? production in response to live bacteria and Toll-like receptor agonists in patients with ataxia telangiectasia. Clinical and Experimental Immunology, 2006, 146, 381-389.	2.6	14
62	Defective nuclear entry of hydrolases prevents neutrophil extracellular trap formation in patients with chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2015, 136, 1703-1706.e5.	2.9	14
63	Spontaneous and oxidative stress-induced programmed cell death in lymphocytes from patients with ataxia telangiectasia (AT). Clinical and Experimental Immunology, 2000, 119, 140-147.	2.6	13
64	Increased number of activated T cells in lymphocyte subsets of maltreated children: Data from a pilot study. Journal of Psychosomatic Research, 2012, 73, 313-318.	2.6	12
65	Safety and Tolerability of Methacholine Challenge in Infants with Recurrent Wheeze. Journal of Asthma, 2003, 40, 795-802.	1.7	9
66	Modern management of phagocyte defects. Pediatric Allergy and Immunology, 2017, 28, 124-134.	2.6	9
67	Severe adenovirus bronchiolitis in children. Acta Paediatrica, International Journal of Paediatrics, 2000, 89, 1387-1389.	1.5	9
68	CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. Molecular Therapy - Methods and Clinical Development, 2020, 17, 936-943.	4.1	8
69	Effectiveness of budesonide nebulising suspension compared to disodium cromoglycate in early childhood asthma. Current Medical Research and Opinion, 2006, 22, 367-373.	1.9	7
70	Immunoglobulins and Inflammatory Cytokines in Nasal Secretions in Humoral Immunodeficiencies. Laryngoscope, 2006, 116, 239-244.	2.0	7
71	Membrane Dynamics and Organization of the Phagocyte NADPH Oxidase in PLB-985 Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 608600.	3.7	7
72	Antioxidative capacity in patients with common variable immunodeficiency. Journal of Clinical Immunology, 2000, 20, 221-226.	3.8	5

#	Article	IF	CITATIONS
73	Serum ECP levels and methacholine challenge in infants with recurrent wheezing. Annals of Allergy, Asthma and Immunology, 2002, 89, 498-502.	1.0	5
74	Signed outside: a surface marker system for transgenic cytoplasmic proteins. Gene Therapy, 2010, 17, 1193-1199.	4.5	5
75	Lentiviral gene therapy vector with UCOE stably restores function in iPSC-derived neutrophils of a CDG patient. Matters, 2018, 2018, .	1.0	5
76	Treatment of HCV infection with interferon alpha-2b and ribavirin in a patient with X-linked lymphoproliferative syndrome. European Journal of Pediatrics, 2006, 165, 348-350.	2.7	4
77	Reactive Oxygen Species Abrogate the Anticarcinogenic Effect of Eicosapentaenoic Acid in Atm-Deficient Mice. Nutrition and Cancer, 2010, 62, 584-592.	2.0	4
78	Newborn Screening for Primary Immunodeficiencies: Focus on Severe Combined Immunodeficiency (SCID) and Other Severe T-Cell Lymphopenias. International Journal of Neonatal Screening, 2015, 1, 89-100.	3.2	4
79	Novel Diagnostic Tool for p47 -Deficient Chronic Granulomatous Disease Patient and Carrier Detection. Molecular Therapy - Methods and Clinical Development, 2019, 13, 274-278.	4.1	3
80	Response: Protecting against Aspergillus infection in CGD. Blood, 2009, 114, 3498-3498.	1.4	2
81	Unusual dermatological presentation and immune phenotype in <scp>SCID</scp> due to an <i><scp>IL</scp>7R</i> mutation: the value of wholeâ€exome sequencing and the potential benefit of newborn screening. Journal of the European Academy of Dermatology and Venereology, 2017, 31, e147-e148.	2.4	2
82	Preliminary Evidence for a Compromised T-Cell Compartment in Maltreated Children with Depression and Posttraumatic Stress Disorder. NeuroImmunoModulation, 2015, 22, 303-310.	1.8	1
83	Gene Therapy for X-Linked Chronic Granulomatous Disease (Net4CGD). Human Gene Therapy Clinical Development, 2015, 26, 88-90.	3.1	1
84	S.7. IL-17 Signaling Defects in Patients with Candida Albicans and/or Staphylococcus Aureus Infections. Clinical Immunology, 2009, 131, S135.	3.2	0
85	Reply to Agger and Kowalski. Clinical Infectious Diseases, 2010, 50, 1325-1326.	5.8	0
86	Development of a pCCLChim Lentiviral Vector for Gene Therapy of Patients with Chronic Granulomatous Disease (CGD) due to p47-phox Deficiency. Journal of Allergy and Clinical Immunology, 2017, 139, AB186.	2.9	0
87	Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. Journal of Experimental Medicine, 2013, 210, 21013OIA64.	8.5	0