Min Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705799/publications.pdf

Version: 2024-02-01

253 papers 24,569 citations

9264 74 h-index 148 g-index

256 all docs

256 docs citations

256 times ranked 23017 citing authors

#	Article	IF	CITATIONS
1	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
2	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	27.8	1,429
3	Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy and Environmental Science, 2019, 12, 322-333.	30.8	1,078
4	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	27.8	807
5	Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry, 2018, 10, 974-980.	13.6	781
6	Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020, 32, 222-243.	14.2	719
7	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>p</i> -Type NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.	13.7	542
8	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nature Chemistry, 2018, 10, 149-154.	13.6	476
9	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4, 107-114.	39.5	470
10	Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019, 10, 5048.	12.8	422
11	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	24.0	390
12	Hybrid Cu _{<i>x</i>} O/TiO ₂ Nanocomposites As Risk-Reduction Materials in Indoor Environments. ACS Nano, 2012, 6, 1609-1618.	14.6	387
13	Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nature Communications, 2021, 12, 1369.	12.8	360
14	Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications, 2020, 11, 4173.	12.8	358
15	Anatase TiO2 single crystals with exposed $\{001\}$ and $\{110\}$ facets: facile synthesis and enhanced photocatalysis. Chemical Communications, 2010, 46, 1664.	4.1	329
16	YAG:Ce ³⁺ Transparent Ceramic Phosphors Brighten the Nextâ€Generation Laserâ€Driven Lighting. Advanced Materials, 2020, 32, e1907888.	21.0	323
17	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 2017, 544, 75-79.	27.8	319
18	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Letters, 2016, 16, 4630-4634.	9.1	312

#	Article	IF	Citations
19	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	31.4	303
20	Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1900430.	21.0	298
21	Energy-Level Matching of Fe(III) Ions Grafted at Surface and Doped in Bulk for Efficient Visible-Light Photocatalysts. Journal of the American Chemical Society, 2013, 135, 10064-10072.	13.7	263
22	New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light: Science and Applications, 2019, 8, 15.	16.6	263
23	Cu(II) Oxide Amorphous Nanoclusters Grafted Ti ³⁺ Self-Doped TiO ₂ : An Efficient Visible Light Photocatalyst. Chemistry of Materials, 2011, 23, 5282-5286.	6.7	262
24	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nature Nanotechnology, 2018, 13, 456-462.	31.5	252
25	Graphitic Carbon Nitride with Dopant Induced Charge Localization for Enhanced Photoreduction of CO ₂ to CH ₄ . Advanced Science, 2019, 6, 1900796.	11.2	251
26	Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nature Communications, 2020, 11, 5368.	12.8	217
27	Pure Cubicâ€Phase Hybrid Iodobismuthates AgBi ₂ 1 ₇ for Thinâ€Film Photovoltaics. Angewandte Chemie - International Edition, 2016, 55, 9586-9590.	13.8	201
28	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	2.6	200
29	Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nature Nanotechnology, 2021, 16, 1371-1377.	31.5	197
30	Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nature Communications, 2022, 13, 2075.	12.8	197
31	Flower-like TiO2 nanostructures with exposed {001} facets: Facile synthesis and enhanced photocatalysis. Nanoscale, 2010, 2, 1115.	5. 6	196
32	Solvothermal synthesis of NH ₂ -MIL-125(Ti) from circular plate to octahedron. CrystEngComm, 2014, 16, 9645-9650.	2.6	187
33	Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting. Electronics (Switzerland), 2019, 8, 876.	3.1	168
34	High-Density Nanosharp Microstructures Enable Efficient CO ₂ Electroreduction. Nano Letters, 2016, 16, 7224-7228.	9.1	158
35	Unveiling Role of Sulfate Ion in Nickelâ€Iron (oxy)Hydroxide with Enhanced Oxygenâ€Evolving Performance. Advanced Functional Materials, 2021, 31, 2102772.	14.9	158
36	Synthesis of Hollow Nanocubes and Macroporous Monoliths of Silicalite-1 by Alkaline Treatment. Chemistry of Materials, 2013, 25, 4197-4205.	6.7	156

#	Article	IF	CITATIONS
37	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie - International Edition, 2021, 60, 16607-16614.	13.8	150
38	Mixed-quantum-dot solar cells. Nature Communications, 2017, 8, 1325.	12.8	148
39	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	13.7	147
40	Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 7479-7487.	14.9	145
41	Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.	14.9	140
42	Visible-Light-Sensitive Photocatalysts: Nanocluster-Grafted Titanium Dioxide for Indoor Environmental Remediation. Journal of Physical Chemistry Letters, 2016, 7, 75-84.	4.6	138
43	Nanomorphology-Enhanced Gas-Evolution Intensifies CO ₂ Reduction Electrochemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 4031-4040.	6.7	135
44	Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 2017, 4, 144-153.	6.0	131
45	Ultrasmall CoP Nanoparticles as Efficient Cocatalysts for Photocatalytic Formic Acid Dehydrogenation. Joule, 2018, 2, 549-557.	24.0	126
46	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	126
47	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Applied Catalysis B: Environmental, 2019, 242, 209-217.	20.2	121
48	Enhanced Photoactivity with Nanocluster-Grafted Titanium Dioxide Photocatalysts. ACS Nano, 2014, 8, 7229-7238.	14.6	120
49	Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification. Applied Catalysis B: Environmental, 2013, 142-143, 598-603.	20.2	118
50	Engineering the Local Microenvironment over Bi Nanosheets for Highly Selective Electrocatalytic Conversion of CO ₂ to HCOOH in Strong Acid. ACS Catalysis, 2022, 12, 2357-2364.	11.2	117
51	Lowâ€Valence Zn ^{Î+} (0<Î<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 22826-22832.	13.8	115
52	Tuning Charge Distribution of FeN ₄ via External N for Enhanced Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 6304-6315.	11.2	114
53	Crosslinked Remoteâ€Doped Holeâ€Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. Advanced Materials, 2016, 28, 2807-2815.	21.0	108
54	Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12, 4903-4908.	5.6	107

#	Article	IF	Citations
55	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	24.0	106
56	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2021, 60, 25241-25245.	13.8	104
57	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202113664.	13.8	102
58	In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorganic Chemistry Frontiers, 2017, 4, 1870-1880.	6.0	96
59	Selective CO ₂ Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10182-10190.	6.7	95
60	Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C ₂ Hydrocarbons in the CO ₂ Electroreduction. Nano Letters, 2022, 22, 1963-1970.	9.1	95
61	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	93
62	Biofunctionalized conductive polymers enable efficient CO ₂ electroreduction. Science Advances, 2017, 3, e1700686.	10.3	89
63	Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals. ACS Nano, 2016, 10, 7401-7408.	14.6	88
64	Vertical ODâ€Perovskite/2Dâ€MoS ₂ van der Waals Heterojunction Phototransistor for Emulating Photoelectricâ€Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics. Small, 2020, 16, e2005217.	10.0	87
65	A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property. Chemical Communications, 2012, 48, 7365.	4.1	86
66	Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 10870-10875.	11.2	86
67	Paired Ruâ€'Oâ€'Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy, 2021, 82, 105767.	16.0	86
68	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	10.0	85
69	Interconnected Hierarchical ZSM-5 with Tunable Acidity Prepared by a Dealumination–Realumination Process: A Superior MTP Catalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26096-26106.	8.0	84
70	Field-emission from quantum-dot-in-perovskite solids. Nature Communications, 2017, 8, 14757.	12.8	83
71	Is Photooxidation Activity of {001} Facets Truly Lower Than That of {101} Facets for Anatase TiO ₂ Crystals?. Journal of Physical Chemistry C, 2012, 116, 26800-26804.	3.1	80
72	Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO ₂ . Advanced Functional Materials, 2022, 32, .	14.9	80

#	Article	IF	CITATIONS
73	Pseudohalideâ€Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. Advanced Materials, 2017, 29, 1700749.	21.0	79
74	Enhancing CO ₂ reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. Journal of Materials Chemistry A, 2020, 8, 15936-15941.	10.3	78
75	CO ₂ Hydrogenation to Hydrocarbons over Iron-based Catalyst: Effects of Physicochemical Properties of Al ₂ O ₃ Supports. Industrial & Engineering Chemistry Research, 2014, 53, 17563-17569.	3.7	76
76	Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ with Controllable Morphology and Size for High Performance Lithium-lon Batteries. ACS Applied Materials & Lithium Substitution (1997), 9, 25358-25368.	8.0	76
77	Activation of CO2 on graphitic carbon nitride supported single-atom cobalt sites. Chemical Engineering Journal, 2021, 415, 128982.	12.7	76
78	An effective method for enhancing oxygen evolution kinetics of LaMO3 (M = Ni, Co, Mn) perovskite catalysts and its application to a rechargeable zinc–air battery. Applied Catalysis B: Environmental, 2020, 262, 118291.	20.2	75
79	Graphitic carbon nitride based single-atom photocatalysts. Frontiers of Physics, 2020, 15, 1.	5.0	72
80	Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries. Journal of Materials Chemistry A, 2019, 7, 20840-20846.	10.3	68
81	Co single-atoms on ultrathin N-doped porous carbon ⟨i>via⟨ i> a biomass complexation strategy for high performance metal–air batteries. Journal of Materials Chemistry A, 2020, 8, 2131-2139.	10.3	68
82	Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation. RSC Advances, 2015, 5, 17897-17904.	3.6	67
83	Low-overpotential selective reduction of CO2 to ethanol on electrodeposited Cu Au nanowire arrays. Journal of Energy Chemistry, 2019, 37, 176-182.	12.9	66
84	Untying thioether bond structures enabled by "voltage-scissors―for stable room temperature sodium–sulfur batteries. Nanoscale, 2019, 11, 5967-5973.	5.6	66
85	Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydrate Polymers, 2018, 199, 516-525.	10.2	65
86	Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal, 2020, 379, 122256.	12.7	64
87	Hierarchical TiO ₂ Nanospheres with Dominant {001} Facets: Facile Synthesis, Growth Mechanism, and Photocatalytic Activity. Chemistry - A European Journal, 2012, 18, 7525-7532.	3.3	63
88	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	21.0	62
89	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	8.6	60
90	UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose, 2018, 25, 3635-3647.	4.9	59

#	Article	IF	Citations
91	Metallic MoO ₂ â€Modified Graphitic Carbon Nitride Boosting Photocatalytic CO ₂ Reduction via Schottky Junction. Solar Rrl, 2020, 4, 1900416.	5.8	59
92	Defect-Induced Ce-Doped Bi ₂ WO ₆ for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 19864-19872.	8.0	59
93	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO ₂ reduction to C ₂ H ₄ . Green Chemistry, 2017, 19, 4023-4030.	9.0	58
94	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	9.9	57
95	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
96	ZnFe ₂ O ₄ Leaves Grown on TiO ₂ Trees Enhance Photoelectrochemical Water Splitting. Small, 2016, 12, 3181-3188.	10.0	56
97	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	3.7	56
98	Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dualâ€Metal–Organic Frameworks for Boosting Photoelectrochemical Water Oxidation. Advanced Science, 2020, 7, 2002563.	11.2	56
99	Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2021, 42, 1500-1508.	14.0	56
100	Visible-light sensitive Cu(<scp>ii</scp>)–TiO ₂ with sustained anti-viral activity for efficient indoor environmental remediation. Journal of Materials Chemistry A, 2015, 3, 17312-17319.	10.3	55
101	Effects of Monocarboxylic Acid Additives on Synthesizing Metal–Organic Framework NH ₂ -MIL-125 with Controllable Size and Morphology. Crystal Growth and Design, 2017, 17, 6586-6595.	3.0	55
102	Superhydrophobic/superoleophilic cotton fabrics treated with hybrid coatings for oil/water separation. Advanced Composites and Hybrid Materials, 2019, 2, 254-265.	21.1	54
103	Synthesis of Titanium Silicalite-1 with High Catalytic Performance for 1-Butene Epoxidation by Eliminating the Extraframework Ti. ACS Omega, 2016, 1, 1034-1040.	3.5	53
104	Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Applied Catalysis B: Environmental, 2022, 306, 121093.	20.2	53
105	p-Block Indium Single-Atom Catalyst with Low-Coordinated In–N Motif for Enhanced Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 7386-7395.	11.2	53
106	Enhanced Catalytic Performance of Titanium Silicaliteâ€1 in Tuning the Crystal Size in the Range 1200–200 nm in a Tetrapropylammonium Bromide System. ChemCatChem, 2015, 7, 2660-2668.	3.7	50
107	Facile synthesis of Fe-containing metal–organic frameworks as highly efficient catalysts for degradation of phenol at neutral pH and ambient temperature. CrystEngComm, 2015, 17, 7160-7168.	2.6	50
108	Surfactant-assisted synthesis of hierarchical NH ₂ -MIL-125 for the removal of organic dyes. RSC Advances, 2017, 7, 581-587.	3.6	50

#	Article	IF	Citations
109	Cu(<scp>ii</scp>) nanocluster-grafted, Nb-doped TiO ₂ as an efficient visible-light-sensitive photocatalyst based on energy-level matching between surface and bulk states. Journal of Materials Chemistry A, 2014, 2, 13571-13579.	10.3	49
110	Chemoselective hydrogenation of nitrobenzenes activated with tuned Au/h-BN. Journal of Catalysis, 2019, 370, 55-60.	6.2	48
111	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	10.3	47
112	Dual-functional CuO/CN for highly efficient solar evaporation and water purification. Separation and Purification Technology, 2021, 254, 117611.	7.9	47
113	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Nano Letters, 2017, 17, 2349-2353.	9.1	46
114	Bridging chemical- and bio-catalysis: high-value liquid transportation fuel production from renewable agricultural residues. Green Chemistry, 2017, 19, 660-669.	9.0	46
115	Highly dispersed Fe-Nx active sites on Graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon, 2021, 171, 1-9.	10.3	46
116	Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science, 2020, 2, 235-247.	8.8	45
117	Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons. RSC Advances, 2014, 4, 8930.	3.6	44
118	Effects of Cesium Ions and Cesium Oxide in Side-Chain Alkylation of Toluene with Methanol over Cesium-Modified Zeolite X. Industrial & Engineering Chemistry Research, 2016, 55, 1849-1858.	3.7	44
119	Plasma-treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride. Applied Surface Science, 2020, 508, 145173.	6.1	44
120	Controlled synthesis of mixed-valent Fe-containing metal organic frameworks for the degradation of phenol under mild conditions. Dalton Transactions, 2016, 45, 7952-7959.	3.3	43
121	Hierarchical 2D yarn-ball like metal–organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 22974-22982.	10.3	43
122	Pure Cubicâ€Phase Hybrid Iodobismuthates AgBi ₂ 1 ₇ for Thinâ€Film Photovoltaics. Angewandte Chemie, 2016, 128, 9738-9742.	2.0	42
123	Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation. Applied Catalysis B: Environmental, 2022, 317, 121713.	20.2	42
124	Insights into the critical dual-effect of acid treatment on ZnxCd1-xS for enhanced photocatalytic production of syngas under visible light. Applied Catalysis B: Environmental, 2021, 288, 119976.	20.2	41
125	In Situ Structural Reconstruction to Generate the Active Sites for CO ₂ Electroreduction on Bismuth Ultrathin Nanosheets. Advanced Energy Materials, 2022, 12, .	19.5	40
126	Enhanced Solarâ€toâ€Hydrogen Generation with Broadband Epsilonâ€Nearâ€Zero Nanostructured Photocatalysts. Advanced Materials, 2017, 29, 1701165.	21.0	39

#	Article	IF	CITATIONS
127	Strong Electron Coupling from the Sub-Nanometer Pd Clusters Confined in Porous Ceria Nanorods for Highly Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 966-973.	5.1	39
128	Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Metals, 2020, 39, 607-609.	7.1	39
129	A thin-film silicon based photocathode with a hydrogen doped TiO ₂ protection layer for solar hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 16841-16848.	10.3	38
130	Study of the enhanced visible-light-sensitive photocatalytic activity of Cr ₂ O ₃ -loaded titanate nanosheets for Cr(<scp>vi</scp>) degradation and H ₂ generation. Catalysis Science and Technology, 2017, 7, 2283-2297.	4.1	38
131	Tuning the electron structure enables the NiZn alloy for CO2 electroreduction to formate. Journal of Energy Chemistry, 2021, 63, 625-632.	12.9	38
132	Anatase TiO2 single crystals with dominant {001} facets: Facile fabrication from Ti powders and enhanced photocatalytical activity. Applied Surface Science, 2013, 274, 117-123.	6.1	37
133	Formation and Evolution of the High-Surface-Energy Facets of Anatase TiO ₂ . Journal of Physical Chemistry C, 2015, 119, 6094-6100.	3.1	37
134	CoS ₂ needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. Nanoscale, 2021, 13, 13604-13609.	5.6	37
135	Defective TiO2 with oxygen vacancy and nanocluster modification for efficient visible light environment remediation. Catalysis Today, 2016, 264, 236-242.	4.4	36
136	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37536-37541.	8.0	35
137	Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon toward High Selectivity of Light Olefins in CO ₂ Hydrogenation. Industrial & Description of Engineering Chemistry Research, 2019, 58, 4017-4023.	3.7	35
138	Solution evaporation processed high quality perovskite films. Science Bulletin, 2018, 63, 1591-1596.	9.0	34
139	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie, 2021, 133, 16743-16750.	2.0	34
140	N,O-C Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N,O-C electrocatalyst. Applied Catalysis B: Environmental, 2022, 304, 120996.	20.2	34
141	Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2022, 43, 519-525.	14.0	34
142	A facile strategy for enhancing FeCu bimetallic promotion for catalytic phenol oxidation. Catalysis Science and Technology, 2015, 5, 3159-3165.	4.1	33
143	Oxygen-Deficient Nanofiber WO _{3â€"<i>x</i>} /WO ₃ Homojunction Photoanodes Synthesized via a Novel Metal Self-Reducing Method. ACS Applied Materials & Diterfaces, 2019, 11, 39951-39960.	8.0	32
144	Designing nitrogen and phosphorus co-doped graphene quantum dots/g-C3N4 heterojunction composites to enhance visible and ultraviolet photocatalytic activity. Applied Surface Science, 2021, 548, 149211.	6.1	32

#	Article	IF	Citations
145	One-step fabrication of flexible, durable and fluorine-free superhydrophobic cotton fabrics for efficient oil/water separation. Cellulose, 2019, 26, 6349-6363.	4.9	31
146	Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environmental Chemistry Letters, 2022, 20, 243-262.	16.2	31
147	Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. ACS Photonics, 2017, 4, 830-836.	6.6	30
148	Tuning Interfacial Active Sites over Porous Mo ₂ N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41573-41583.	8.0	30
149	Fabrication and photocatalytical properties of flower-like TiO2 nanostructures. Transactions of Nonferrous Metals Society of China, 2010, 20, 2299-2302.	4.2	29
150	Compound Homojunction:Heterojunction Reduces Bulk and Interface Recombination in ZnO Photoanodes for Water Splitting. Small, 2017, 13, 1603527.	10.0	29
151	Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery. Research, 2019, 2019, 6813585.	5.7	29
152	Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products. Journal of Energy Chemistry, 2022, 70, 219-223.	12.9	29
153	Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.	20.2	28
154	The progress of nanomaterials for carbon dioxide capture <i>via</i> the adsorption process. Environmental Science: Nano, 2021, 8, 890-912.	4.3	28
155	Recent advances in different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and Interface Science, 2019, 550, 17-47.	9.4	26
156	Band-Gap Engineering of FeF ₃ ·0.33H ₂ O Nanosphere via Ni Doping as a High-Performance Lithium-Ion Battery Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 15651-15660.	6.7	26
157	Insights into the development of Cu-based photocathodes for carbon dioxide (CO ₂) conversion. Green Chemistry, 2021, 23, 3207-3240.	9.0	26
158	A neutral polysulfide/ferricyanide redox flow battery. IScience, 2021, 24, 103157.	4.1	26
159	Fermi Level Equilibration at the Metal–Molecule Interface in Plasmonic Systems. Nano Letters, 2021, 21, 6592-6599.	9.1	25
160	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	10.0	24
161	The synergistic interactions of reaction parameters in heterogeneous peroxymonosulfate oxidation: Reaction kinetic and catalytic mechanism. Journal of Hazardous Materials, 2022, 421, 126841.	12.4	24
162	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	24

#	Article	IF	Citations
163	Controlled Synthesis of Anatase TiO ₂ Single Crystals with Dominant {001} Facets from TiO ₂ Powders. ChemPlusChem, 2012, 77, 1017-1021.	2.8	23
164	Porous Copper Microspheres for Selective Production of Multicarbon Fuels via CO ₂ Electroreduction. Small, 2019, 15, e1902582.	10.0	23
165	Boosting CO ₂ electroreduction towards C ₂₊ products <i>via</i> CO* intermediate manipulation on copper-based catalysts. Environmental Science: Nano, 2022, 9, 911-953.	4.3	23
166	Role of Supports in the Tetrapropylammonium Hydroxide Treated Titanium Silicalite-1 Extrudates. Industrial & Engineering Chemistry Research, 2015, 54, 1513-1519.	3.7	22
167	Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. Frontiers in Chemistry, 2020, 8, 58.	3.6	22
168	Tuning morphology and structure of Fe–N–C catalyst for ultra-high oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2020, 45, 6380-6390.	7.1	22
169	Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels. Electrochimica Acta, 2021, 388, 138552.	5.2	22
170	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie, 2021, 133, 25445-25449.	2.0	22
171	Dual active sites fabricated through atomic layer deposition of TiO ₂ on MoS ₂ nanosheet arrays for highly efficient electroreduction of CO ₂ to ethanol. Journal of Materials Chemistry A, 2021, 9, 6790-6796.	10.3	22
172	Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chemical Communications, 2021, 57, 6070-6073.	4.1	22
173	Hydrothermal synthesis and formation mechanism of Aurivillius Bi ₅ Fe _{0.9} Co _{0.1} Ti ₃ O ₁₅ nanosheets. CrystEngComm, 2016, 18, 7449-7456.	2.6	20
174	Facile one-step synthesis of hierarchical porous carbon monoliths as superior supports of Fe-based catalysts for CO ₂ hydrogenation. RSC Advances, 2016, 6, 10831-10836.	3.6	20
175	High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: Enhanced ion adsorption by the local electric field. Chemical Engineering Journal, 2022, 435, 134860.	12.7	20
176	Cu-based bimetallic catalysts for CO2 reduction reaction. , 2022, 1, 100023.		20
177	Characterization of Ti-ZSM-5 Prepared by Isomorphous Substitution of B-ZSM-5 with TiCl ₄ and Its Performance in the Hydroxylation of Phenol. Industrial & Description of Phenol. 100, 49, 2194-2199.	3.7	19
178	Hierarchical TiO2 spheres: facile fabrication and enhanced photocatalysis. Rare Metals, 2011, 30, 153-156.	7.1	19
179	Tailoring the structure of supported l´-MnO2 nanosheets to raise pseudocapacitance by surface-modified carbon cloth. Journal of Power Sources, 2020, 449, 227507.	7.8	19
180	Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. Frontiers of Physics, 2021, 16, 1.	5.0	19

#	Article	IF	Citations
181	Novel ultra-high-temperature zero-thermal quenching plant-protecting type blue-green dual-emission KAl ₁₁ O ₁₇ :Eu ²⁺ ,Mn ²⁺ phosphors for urban ecological lighting. Journal of Materials Chemistry C, 2022, 10, 3461-3471.	5.5	19
182	Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catalysis Today, 2014, 225, 74-79.	4.4	18
183	In Situ Aluminum Migration into Zeolite Framework during Methanol-To-Propylene Reaction: An Innovation To Design Superior Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 8190-8199.	3.7	18
184	CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment. Chinese Journal of Catalysis, 2022, 43, 832-838.	14.0	18
185	Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation. Chinese Chemical Letters, 2022, 33, 5208-5212.	9.0	17
186	Regulating local charges of atomically dispersed Mo+ sites by nitrogen coordination on cobalt nanosheets to trigger water dissociation for boosted hydrogen evolution in alkaline media. Journal of Energy Chemistry, 2022, 72, 125-132.	12.9	17
187	Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products. Applied Catalysis B: Environmental, 2022, 316, 121616.	20.2	17
188	Coexistence of antiferromagnetic and ferromagnetic in Mn-doped anatase TiO2 nanowires. Central South University, 2010, 17, 239-243.	0.5	16
189	Fabrication of micrometer-scale spherical titanate nanotube assemblies with high specific surface area. Materials Letters, 2010, 64, 1204-1207.	2.6	16
190	Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5, 29509-29512.	3.6	16
191	Visible-light-driven photocatalysis via reductant-to-band charge transfer in Cr(III) nanocluster-loaded SrTiO3 system. Applied Catalysis B: Environmental, 2020, 270, 118883.	20.2	16
192	Single-Cell Identification, Drug Susceptibility Test, and Whole-genome Sequencing of <i>Helicobacter pylori</i> Directly from Gastric Biopsy by Clinical Antimicrobial Susceptibility Test Ramanometry. Clinical Chemistry, 2022, 68, 1064-1074.	3.2	16
193	Facile Synthesis of Hollow TiO ₂ Single Nanocrystals with Improved Photocatalytic and Photoelectrochemical Activities. ChemPlusChem, 2015, 80, 688-696.	2.8	15
194	Multi-dimensional CuO nanorods supported CoMoO4 nanosheets heterostructure as binder free and high stable electrode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 10353-10361.	2.2	15
195	Chirality Induces the Self-Assembly To Generate a 3D Porous Spiral-like Polyhedron as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 45596-45605.	8.0	15
196	Narrow band-gapped perovskite oxysulfide for CO2 photoreduction towards ethane. Applied Catalysis B: Environmental, 2022, 316, 121615.	20.2	15
197	Enhanced Catalytic Activity on Postâ€Synthesized Hollow Titanium Silicaliteâ€1 with High Titanium Content on the External Surface. ChemistrySelect, 2016, 1, 6160-6166.	1.5	14
198	FDTD simulation of the optical properties for a gold nanoparticle-over-nanosheet hybrid structure. Current Applied Physics, 2020, 20, 391-399.	2.4	14

#	Article	IF	Citations
199	CoN4 active sites in locally distorted carbon structure for efficient oxygen reduction reaction via regulating coordination environment. Chemical Engineering Journal, 2022, 429, 132119.	12.7	14
200	Design and Facile Synthesis of Highly Efficient and Durable Bifunctional Oxygen Electrocatalyst Fe–N _{<i>x</i>} /C Nanocages for Rechargeable Zinc-Air Batteries. ACS Applied Materials & Linterfaces, 2021, 13, 54032-54042.	8.0	14
201	Ti(<scp>iv</scp>) nanoclusters as a promoter on semiconductor photocatalysts for the oxidation of organic compounds. Journal of Materials Chemistry A, 2016, 4, 1784-1791.	10.3	13
202	Synergistic defect- and interfacial-engineering of a Bi ₂ S ₃ -based nanoplate network for high-performance photoelectrochemical solar water splitting. Journal of Materials Chemistry A, 2022, 10, 7830-7840.	10.3	13
203	Fabrication and Characteristics of Three-Dimensional Flower-Like Titanate Nanostructures. Journal of Nanoscience and Nanotechnology, 2010, 10, 7469-7472.	0.9	12
204	Bismuth vanadate single crystal particles modified with tungsten for efficient photoeletrochemical water oxidation. Catalysis Today, 2019, 335, 511-519.	4.4	12
205	Nitrogen-doped carbon with high graphitic-N exposure for electroreduction of CO2 to CO. Ionics, 2021, 27, 3089-3098.	2.4	12
206	Dual Inorganic Sacrificial Template Synthesis of Hierarchically Porous Carbon with Specific N Sites for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2021, 13, 28140-28149.	8.0	12
207	Microenvironmental Feeding and Stabilization of C ₂ H ₄ Intermediates by lodide-Doped Copper Nanowire Arrays to Boost C ₂ H ₆ Formation. Energy & Fuels, 2021, 35, 15987-15994.	5.1	12
208	Lowâ€Valence Zn ^{Î'+} (0<Î'<2) Singleâ€Atom Material as Highly Efficient Electrocatalyst for CO ₂ Reduction. Angewandte Chemie, 2021, 133, 23008-23014.	2.0	12
209	Crystallization behavior of 3D-structured OMS-2 under hydrothermal conditions. CrystEngComm, 2015, 17, 3636-3644.	2.6	11
210	Oxalic Acid Modification of β Zeolite for Dehydration of 2-(4′-Ethylbenzoyl) Benzoic Acid. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 8850-8856.	3.7	11
211	A Facile Strategy to Prepare Shaped ZSM-5 Catalysts with Enhanced Para-Xylene Selectivity and Stability for Toluene Methylation: The Effect of In Situ Modification by Attapulgite. Molecules, 2019, 24, 3462.	3.8	11
212	Synthesis of hexagonal phase Gd2O2CO3:Yb3+, Er3+upconversion nanoparticles via SiO2coating and Nd3+doping. CrystEngComm, 2015, 17, 5702-5709.	2.6	10
213	Morphology control of layered Bi ₁₁ Fe _{2.8} Co _{0.2} Ti ₆ O ₃₃ microcrystals: critical role of NaOH concentration and citric acid. CrystEngComm, 2017, 19, 7001-7008.	2.6	10
214	Cobalt-Substituted Seven-Layer Aurivillius Bi8Fe4Ti3O24 Ceramics: Enhanced Ferromagnetism and Ferroelectricity. Crystals, 2017, 7, 76.	2.2	10
215	Extended Near-Infrared Photoactivity of Bi6Fe1.9Co0.1Ti3O18 by Upconversion Nanoparticles. Nanomaterials, 2018, 8, 534.	4.1	10
216	Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction. Journal of Central South University, 2019, 26, 1503-1509.	3.0	10

#	Article	IF	CITATIONS
217	Vertical SrNbO ₂ N Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting. Solar Rrl, 2021, 5, 2000448.	5.8	10
218	Efficient three-phase electrocatalytic CO ₂ reduction to formate on superhydrophobic Bi–C interfaces. Chemical Communications, 2021, 57, 6011-6014.	4.1	10
219	Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithiumâ€lon Storage Characteristics of Rodâ€Like Morphology FeF ₃ Â0.33H ₂ O. Small, 2022, 18, e2105193.	10.0	10
220	Controlling Plasmonic Chemistry Pathways through Specific Ion Effects. Advanced Optical Materials, 2022, 10 , .	7.3	10
221	Elucidating the Active-Phase Evolution of Fe-Based Catalysts during Isobutane Dehydrogenation with and without CO ₂ in Feed Gas. ACS Catalysis, 2022, 12, 5930-5938.	11.2	10
222	Band-aligned C $<$ sub $>3sub>N<sub>4a^2xsub>S<sub>3x/2sub> stabilizes CdS/CuInGaS<sub>2sub> photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017, 5, 3167-3171.$	10.3	9
223	Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity. Catalysis Science and Technology, 2020, 10, 6152-6160.	4.1	9
224	Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to <i>para</i> -xylene. Inorganic Chemistry Frontiers, 2022, 9, 3348-3358.	6.0	9
225	Oxygen vacancies contained TiO2 spheres: facile fabrication and enhanced ferromagnetism. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
226	Facile Preparation of Efficient WO ₃ Photocatalysts Based on Surface Modification. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	8
227	Effects of the Pore Structure and Acid–Base Property of X Zeolites on Side-Chain Alkylation of Toluene with Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 14381-14396.	3.7	8
228	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie, 0, , .	2.0	8
229	Conductive layer protected and oxide catalyst-coated thin-film silicon solar cell as an efficient photoanode. Catalysis Science and Technology, 2017, 7, 5608-5613.	4.1	7
230	The High-PerformanceÂHollow Silicalite-1@Titanium Silicalite-1ÂCore-Shell Catalyst for Propene Epoxidation. ChemistrySelect, 2017, 2, 10097-10100.	1.5	7
231	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	2.0	7
232	Identification of the active site during CF $<$ sub $>$ 4 $<$ /sub $>$ hydrolytic decomposition over \hat{I}^3 -Al $<$ sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$. Environmental Science: Nano, 2022, 9, 954-963.	4.3	6
233	Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
234	Fuzzy Neural Network PID Control for Electric Power Steering System., 2007,,.		5

#	Article	IF	Citations
235	Novel porphyrin–phthalocyanine heterodimers and heteropentamers: synthesis, characterization and application in organic solar cells. RSC Advances, 2013, 3, 13259.	3.6	5
236	A large-scale, flexible and two-dimensional AuNP/NS as a highly active and homogeneous SERS substrate. Applied Physics Express, 2019, 12, 075005.	2.4	5
237	Hybrid TaON/LaTiO2N photoelectrode for water oxidation. Transportation Safety and Environment, 2019, 1, 212-219.	2.1	5
238	The critical role of alkali cations in synthesizing Bi5FeTi3O15 nanocrystals. Journal of Materials Science, 2019, 54, 1948-1957.	3.7	5
239	"Planting―MOF nanotube on Chinese Xuan Paper derived 3D carbon paper: An efficient positive electrode for Ni-Zn battery. Journal of Solid State Chemistry, 2020, 289, 121473.	2.9	5
240	Kinetics simulation of propylene epoxidation over different Ti species in TS â€1. AICHE Journal, 2021, 67, e17261.	3.6	5
241	BiVO ₄ Hollow Nanoplates with Improved Photocatalytic Water Oxidation Efficiency. Current Nanoscience, 2015, 11, 499-503.	1.2	5
242	Influence of Al Coordinates on Hierarchical Structure and T Atoms Redistribution during Base Leaching of ZSM-5. Industrial & Engineering Chemistry Research, 0, , .	3.7	4
243	Enhanced Gas Separation Performance by Embedding Submicron Poly(ethylene glycol) Capsules into Polyetherimide Membrane. Chinese Journal of Polymer Science (English Edition), 2021, 39, 355-364.	3.8	4
244	Predicting scalar coupling constants by graph angle-attention neural network. Scientific Reports, 2021, 11, 18686.	3.3	4
245	Gas-phase propene epoxidation over Ag/TS-1 prepared by plasma sputtering. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 447-457.	1.7	3
246	The influence of the acid source on the structural and anti-oxidation properties of ordered mesoporous carbons. RSC Advances, 2013, 3, 25050.	3.6	3
247	Reducing the Cost of Zinc–Oxygen Batteries by Oxygen Recycling. Energy Technology, 2018, 6, 246-250.	3.8	3
248	Neuromorphic Photoelectric Devices: Vertical ODâ€Perovskite/2Dâ€MoS ₂ van der Waals Heterojunction Phototransistor for Emulating Photoelectricâ€Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics (Small 45/2020). Small, 2020, 16, 2070244.	10.0	2
249	Polarized optical properties of hollowed-out 2D-gold-nanosheets studied using FDTD simulations. AIP Advances, 2021, 11, 085026.	1.3	2
250	Multifunctionalization of Nanostructured Metal Oxides. Journal of Nanomaterials, 2015, 2015, 1-1.	2.7	1
251	Hollow Crystals: Hollow ZSMâ€5 with Siliconâ€Rich Surface, Double Shells, and Functionalized Interior with Metallic Nanoparticles and Carbon Nanotubes (Adv. Funct. Mater. 48/2015). Advanced Functional Materials, 2015, 25, 7478-7478.	14.9	1
252	Synthesis of Pd0.01FexCe $(1\hat{a}^2x)/2Zr(1\hat{a}^2x)/2Oy$ catalysts and their catalytic performance for ammonia production by passive SCR reaction. New Journal of Chemistry, 2021, 45, 5002-5012.	2.8	1