
Hai-bo Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705550/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nematicidal, antifungal and insecticidal activities of Artemisia halodendron extracts: New polyacetylenes involved. Industrial Crops and Products, 2021, 170, 113825.	5.2	7
2	Novel Bithiophene Dimers from <i>Echinops latifolius</i> as Potential Antifungal and Nematicidal Agents. Journal of Agricultural and Food Chemistry, 2020, 68, 11939-11945.	5.2	15
3	Constituents Leached by Tomato Seeds Regulate the Behavior of Root-Knot Nematodes and Their Antifungal Effects against Seed-Borne Fungi. Journal of Agricultural and Food Chemistry, 2020, 68, 9061-9069.	5.2	4
4	Modified Eremophilanes from <i>Parasenecio hastatus</i> and Their Neuroprotective Activities. Journal of Natural Products, 2020, 83, 185-193.	3.0	8
5	A New Eremophilane Sesquiterpene with Nematocidal Activity from Ligularia veitchiana. Chemistry of Natural Compounds, 2019, 55, 671-673.	0.8	4
6	Echingridimer A, an Oxaspiro Dimeric Sesquiterpenoid with a 6/6/5/6/6 Fused Ring System from <i>Echinops grijsii</i> and Aphicidal Activity Evaluation. Journal of Organic Chemistry, 2019, 84, 10757-10763.	3.2	7
7	Sesquiterpenoids from Artemisia vestita and Their Antifeedant and Antifungal Activities. Molecules, 2019, 24, 3671.	3.8	7
8	A New Sesquiterpene with Nematocidal Activity from Artemisia dubia. Chemistry of Natural Compounds, 2019, 55, 1073-1075.	0.8	1
9	Thiophenes from <i>Echinops grijsii</i> as a Preliminary Approach To Control Disease Complex of Root-Knot Nematodes and Soil-Borne Fungi: Isolation, Activities, and Structure–Nonphototoxic Activity Relationship Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 6160-6168.	5.2	20
10	Wormwood (Artemisia absinthium L.) as a promising nematicidal and antifungal agent: Chemical composition, comparison of extraction techniques and bioassay-guided isolation. Industrial Crops and Products, 2019, 133, 295-303.	5.2	23
11	Two new eremophilenolides from the roots of <i>Ligulariopsis shichuana</i> and their anti-phytopathogenic fungal and antifeedant activities. Natural Product Research, 2019, 33, 1442-1448.	1.8	4
12	Terpenoids from the barks of <i>Magnolia maudiae</i> (Dunn) Figlar. Natural Product Research, 2018, 32, 1518-1524.	1.8	1
13	Antifeedant Activities of Secondary Metabolites from Hyssopus cuspidatus Against Plutella xylostella. Chemistry of Natural Compounds, 2018, 54, 1088-1090.	0.8	1
14	Leaves of Magnolia liliflora Desr. as a high-potential by-product: Lignans composition, antioxidant, anti-inflammatory, anti-phytopathogenic fungal and phytotoxic activities. Industrial Crops and Products, 2018, 125, 416-424.	5.2	13
15	Oleanane-Type Saponins from the Roots of Ligulariopsis shichuana and Their α-Glucosidase Inhibitory Activities. Molecules, 2017, 22, 1981.	3.8	3
16	A new sesquiterpene from the barks of <i>Manglietia hookeri</i> . Natural Product Research, 2016, 30, 2396-2401.	1.8	2
17	Insecticidal activity of sesquiterpene lactones and monoterpenoid from the fruits of Carpesium abrotanoides. Industrial Crops and Products, 2016, 92, 77-83.	5.2	44
18	Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V ₂ O ₅ . ACS Applied Materials & Interfaces, 2016, 8, 24629-24637.	8.0	41

Наі-во Wu

#	Article	IF	CITATIONS
19	Sesquiterpene-neolignans from Manglietia hookeri. Natural Product Research, 2016, 30, 1477-1483.	1.8	4
20	A New Sesquiterpenoid from the Flower Buds of Carpesium triste. Chemistry of Natural Compounds, 2015, 51, 681-683.	0.8	1
21	Eudesmanolides and Guaianolides fromCarpesium triste. Helvetica Chimica Acta, 2014, 97, 88-94.	1.6	5
22	A new illicinolide from leaves of <i>Illicium micranthum</i> Dunn. Natural Product Research, 2014, 28, 1598-1601.	1.8	5
23	Lignans from the Flower Buds of <i>Magnolia liliflora</i> Desr Planta Medica, 2012, 78, 141-147.	1.3	13
24	6,8-Dihydroxy-8a-methyl-3,5-dimethylidenedecahydronaphtho[2,3-b]furan-2(3H)-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3251-o3251.	0.2	1
25	A new pyranone from Lenzites betulina. Chemistry of Natural Compounds, 2012, 48, 780-781.	0.8	8
26	6β-Hydroxyeremophil-7(11)-en-8β,12-olide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1361-o1361.	0.2	2
27	3β-Acetoxy-8β,10β-dihydroxy-6β-methoxyeremophil-7(11)-en-8,12-olide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2161-o2161.	0.2	1