List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6705394/publications.pdf Version: 2024-02-01

ALAD LÃNES

#	Article	IF	CITATIONS
1	Electrochemical Characteristics of Zn-Ion Hybrid Supercapacitors Based on Aqueous Solution of Different Electrolytes. Journal of the Electrochemical Society, 2022, 169, 020512.	2.9	10
2	Carbide-Derived Carbons: WAXS and Raman Spectra for Detailed Structural Analysis. Journal of Carbon Research, 2021, 7, 29.	2.7	10
3	Hydrogen adsorption properties of carbide-derived carbons at ambient temperature and high pressure. International Journal of Hydrogen Energy, 2021, 46, 15761-15772.	7.1	14
4	Bis(trifluoromethanesulfonyl)imide Metallic Salts Based Electrolytes for Electrochemical Capacitor Application: Theoretical vs Experimental Performance. Journal of the Electrochemical Society, 2021, 168, 070528.	2.9	3
5	Zn(ClO4)2 aqueous solution–based Zn thin foil carbon cloth two-electrode single-cell characteristics. Journal of Solid State Electrochemistry, 2021, 25, 2869-2880.	2.5	5
6	Operando XRD study on the Effect of Boron Doping on the Failure Mechanisms of Na-, Ni- and Mn-based Positive Electrodes in Sodium-Ion Batteries. ECS Transactions, 2021, 104, 99-106.	0.5	0
7	Operando XRD study on the Effect of Boron Doping on the Failure Mechanisms of Na-, Ni- and Mn-based Positive Electrodes in Sodium-Ion Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 123-123.	0.0	0
8	Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors. Journal of Applied Electrochemistry, 2020, 50, 15-32.	2.9	17
9	lodide ion containing ionic liquid mixture based asymmetrical capacitor performance. Journal of Energy Storage, 2020, 32, 101845.	8.1	8
10	Peat-derived hard carbon electrodes with superior capacity for sodium-ion batteries. RSC Advances, 2020, 10, 20145-20154.	3.6	26
11	Effect of Zinc Chloride Activation on D-Glucose Derived Carbons Based Capacitors Performance in Ionic Liquid. Journal of the Electrochemical Society, 2020, 167, 080533.	2.9	8
12	Glycine-Nitrate Process for Synthesis of Na3V2(PO4)3 Cathode Material and Optimization of Glucose-Derived Hard Carbon Anode Material for Characterization in Full Cells. Batteries, 2019, 5, 56.	4.5	10
13	Enhanced Power Performance of Highly Mesoporous Sol-Gel TiC Derived Carbons in Ionic Liquid and Non-Aqueous Electrolyte Based Capacitors. Journal of the Electrochemical Society, 2019, 166, A2887-A2895.	2.9	11
14	Low concentrated carbonaceous suspensions assisted with carboxymethyl cellulose as electrode for electrochemical flow capacitor. European Physical Journal E, 2019, 42, 8.	1.6	6
15	Electrical Double Layer Capacitors Based on Steam and CO ₂ -Steam Co-Activated Carbon Electrodes and Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2019, 166, A1558-A1567.	2.9	13
16	In Situ Acoustic Diagnostics of Particle-Binder Interactions in Battery Electrodes. Joule, 2018, 2, 988-1003.	24.0	29
17	Potassium Salts Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitors: A Comparison with LiPF ₆ and NaPF ₆ Based Electrolytes. Journal of the Electrochemical Society, 2018, 165, A3862-A3870.	2.9	12
18	Increasing the stability of very high potential electrical double layer capacitors by operando passivation. Journal of Power Sources, 2018, 402, 53-61.	7.8	12

#	Article	IF	CITATIONS
19	Steam and Carbon Dioxide Co-Activated Silicon Carbide-Derived Carbons for High Power Density Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2018, 165, A2357-A2364.	2.9	7
20	Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochimica Acta, 2018, 283, 931-948.	5.2	37
21	Application of Some Carbon Fabrics as Outstanding Supercapacitor Electrode Materials in Acetonitrile Based Electrolyte. Journal of the Electrochemical Society, 2017, 164, A453-A460.	2.9	4
22	Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors. Chemical Engineering Journal, 2017, 320, 576-587.	12.7	41
23	Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium- and sodium-ion batteries. Electrochimica Acta, 2017, 253, 536-544.	5.2	67
24	Carbon for Energy Storage Derived from Granulated White Sugar by Hydrothermal Carbonization and Subsequent Zinc Chloride Activation. Journal of the Electrochemical Society, 2017, 164, A1866-A1872.	2.9	32
25	Alkali-Metal Insertion Processes on Nanospheric Hard Carbon Electrodes: An Electrochemical Impedance Spectroscopy Study. Journal of the Electrochemical Society, 2017, 164, E3429-E3437.	2.9	27
26	Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. Journal of Power Sources, 2016, 326, 624-634.	7.8	68
27	Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. Journal of the Electrochemical Society, 2016, 163, A1317-A1325.	2.9	33
28	A Hybrid Capacitor Based on Fe ₃ O ₄ -Graphene Nanocomposite/Few-Layer Graphene in Different Aqueous Electrolytes. Journal of the Electrochemical Society, 2016, 163, A2768-A2775.	2.9	63
29	Characteristics of Capacitors Based on Ionic Liquids: From Dielectric Polymers to Redox-Active Adsorbed Species. ECS Transactions, 2016, 75, 161-170.	0.5	6
30	D-Glucose Derived Nanospheric Hard Carbon Electrodes for Room-Temperature Sodium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A1619-A1626.	2.9	66
31	Ionic liquid-1,2-dimethoxyethane mixture as electrolyte for high power density supercapacitors. Journal of Energy Chemistry, 2016, 25, 609-614.	12.9	21
32	In situ hydrodynamic spectroscopy for structure characterization of porous energy storageAelectrodes. Nature Materials, 2016, 15, 570-575.	27.5	77
33	Vinylene Carbonate as Co-Solvent for Low-Temperature Mixed Electrolyte Based Supercapacitors. Journal of the Electrochemical Society, 2016, 163, A851-A857.	2.9	16
34	Synthesis and Characterization of Na ₃ V ₂ (PO ₄) ₂ F ₃ Based Cathode Material for Sodium Ion Batteries. ECS Transactions, 2015, 69, 27-36.	0.5	3
35	Carbon Dioxide Activated SiC-CDC: Attractive Material for Supercapacitor Electrodes. ECS Transactions, 2015, 69, 1-10.	0.5	1
36	Supercapacitors Based on Mixture of Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions. ECS Transactions, 2015, 64, 1-11.	0.5	6

#	Article	IF	CITATIONS
37	High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Power Sources, 2015, 280, 667-677.	7.8	111
38	Low Temperature Performance of Electrochemical Double-Layer Capacitor based on Electrospun Half-Cells. Journal of the Electrochemical Society, 2015, 162, A5031-A5036.	2.9	6
39	Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC. Electrochimica Acta, 2015, 161, 364-370.	5.2	75
40	Separator Materials Influence on Supercapacitors Performance in Viscous Electrolytes. ECS Transactions, 2015, 64, 41-49.	0.5	7
41	Oxygen Electroreduction on Platinum Nanoparticles Deposited onto D-Glucose Derived Carbon. Journal of the Electrochemical Society, 2015, 162, F651-F660.	2.9	9
42	Supercapacitors Based on Propylene Carbonate Solution Operating from -45 ÂC to 100 ÂC. ECS Transactions, 2015, 64, 31-40.	0.5	3
43	Supercapacitors Based on Propylene Carbonate with Addition of Sulfur Containing Organic Solvents. ECS Transactions, 2015, 64, 21-30.	0.5	1
44	Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region. Journal of Solid State Electrochemistry, 2015, 19, 769-783.	2.5	18
45	D-Glucose Derived Micro/Mesoporous Carbons for Ultra-High Rate Supercapacitor Application. ECS Transactions, 2014, 58, 3-12.	0.5	0
46	Supercapacitors Based on Propylene Carbonate with Small Addition of Different Sulfur Containing Organic Solvents. Journal of the Electrochemical Society, 2014, 161, A1284-A1290.	2.9	14
47	Fluoroethylene Carbonate and Propylene Carbonate Mixtures Based Electrolytes for Supercapacitors. ECS Transactions, 2014, 58, 71-79.	0.5	5
48	Characteristics of non-aqueous quaternary solvent mixture and Na-salts based supercapacitor electrolytes in a wide temperature range. Electrochimica Acta, 2014, 121, 294-300.	5.2	43
49	Application of multistep electrospinning method for preparation of electrical double-layer capacitor half-cells. Electrochimica Acta, 2014, 119, 72-77.	5.2	17
50	Cesium carborane as an unconventional non-aqueous electrolyte salt for electrochemical capacitors. Electrochimica Acta, 2014, 125, 482-487.	5.2	17
51	Electrochemical Double Layer Capacitors Based on Propylene Carbonate Solution Operating from â^'45°C to 100°C. Journal of the Electrochemical Society, 2014, 161, A712-A717.	2.9	9
52	Novel micromesoporous carbon materials synthesized from tantalum hafnium carbide and tungsten titanium carbide. Carbon, 2014, 67, 607-616.	10.3	46
53	Microporous and Mesoporous Carbide-Derived Carbons for Strain Modification of Electromechanical Actuators. Langmuir, 2014, 30, 2583-2587.	3.5	12
54	A Type High Capacitance Supercapacitor Based on Mixed Room Temperature Ionic Liquids Containing Specifically Adsorbed Iodide Anions. Journal of the Electrochemical Society, 2014, 161, A222-A227.	2.9	69

#	Article	IF	CITATIONS
55	Specific Performance of Supercapacitors at Lower Temperatures Based on Different Separator Materials. Journal of the Electrochemical Society, 2013, 160, A449-A457.	2.9	25
56	Specific Performance of Electrical Double-Layer Capacitors Based on Different Separator Materials and Non-Aqueous Electrolytes. ECS Transactions, 2013, 50, 181-189.	0.5	0
57	Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. Journal of Solid State Electrochemistry, 2013, 17, 19-28.	2.5	42
58	Influence of separator properties on electrochemical performance of electrical double-layer capacitors. Journal of Electroanalytical Chemistry, 2013, 689, 8-20.	3.8	42
59	Carbon materials for supercapacitor application by hydrothermal carbonization of D-glucose. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012020.	0.6	3
60	Surface Characterization of Supercapacitor Electrodes after Long-Lasting Constant Current Tests. ECS Transactions, 2013, 50, 191-198.	0.5	0
61	Novel NaClO4 and NaPF6 Based Non-Aqueous Electrolytes for Electrical Double Layer Capacitor Application. ECS Transactions, 2013, 50, 153-161.	0.5	1
62	Fluoroethylene Carbonate as Co-Solvent for Propylene Carbonate Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013, 160, A1025-A1030.	2.9	19
63	Surface analysis of supercapacitor electrodes after long-lasting constant current tests. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012006.	0.6	1
64	High Power Density Supercapacitors Based on the Carbon Dioxide Activated D-Glucose Derived Carbon Electrodes and Acetonitrile Electrolyte. Journal of the Electrochemical Society, 2013, 160, A1834-A1841.	2.9	47
65	Influence of Different Organic Solvent Additives on 1-ethyl-3-methylimidazolium Tetrafluoroborate Electrolyte Based Electrical Double Layer Capacitors. Journal of the Electrochemical Society, 2013, 160, A1741-A1745.	2.9	18
66	Polymorphic Behavior and Morphology of Electrospun Poly(Vinylidene Fluoride) Separator Materials for Non-Aqueous Electrolyte Based Electric Double Layer Capacitors. ECS Transactions, 2013, 50, 49-58.	0.5	8
67	Comparative Study of Using Chlorine and Hydrogen Chloride for Synthesis of Titanium Carbide Derived Carbon. ECS Transactions, 2013, 50, 3-12.	0.5	1
68	Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012018.	0.6	1
69	Low-voltage bending actuators from carbide-derived carbon improved with gold foil. , 2012, , .		0
70	Electrochemical Behavior of α-Tungsten Carbide-Derived Carbon Based Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2012, 159, A208-A213.	2.9	23
71	Electrical double layer capacitors based on 1-ethyl-3-methylimidazolium tetrafluoroborate with small addition of acetonitrile. Electrochimica Acta, 2012, 85, 139-144.	5.2	41
72	Surface Analysis of Supercapacitor Electrodes After Long-Lasting Constant Current Tests in Organic Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1141-A1147.	2.9	17

#	Article	IF	CITATIONS
73	Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties. Journal of the Electrochemical Society, 2012, 159, A944-A951.	2.9	85
74	Lithium bis(oxalato)borate as an electrolyte for micromesoporous carbide-derived carbon based supercapacitors. Journal of Electroanalytical Chemistry, 2012, 669, 67-72.	3.8	19
75	Specific performance of electrical double layer capacitors based on different separator materials in room temperature ionic liquid. Electrochemistry Communications, 2012, 22, 77-80.	4.7	51
76	ls the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors?. Electrochemistry Communications, 2012, 22, 203-206.	4.7	65
77	NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochimica Acta, 2012, 82, 309-313.	5.2	45
78	Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. Journal of Solid State Electrochemistry, 2012, 16, 2717-2722.	2.5	15
79	Selective adsorption of multivalent ions into TiC-derived nanoporous carbon. Carbon, 2012, 50, 3957-3960.	10.3	25
80	Impact of carbon nanotube additives on carbide-derived carbon-based electroactive polymer actuators. Carbon, 2012, 50, 4351-4358.	10.3	38
81	Nanoporous carbide-derived carbon based actuators modified with gold foil: Prospect for fast response and low voltage applications. Sensors and Actuators B: Chemical, 2012, 161, 629-634.	7.8	46
82	Electroactive polymer actuators with carbon aerogel electrodes. Journal of Materials Chemistry, 2011, 21, 2577.	6.7	61
83	Synthesis and Characterization of Carbide-Derived Carbons Prepared from Different Chromium Carbides. ECS Meeting Abstracts, 2011, , .	0.0	0
84	Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts. Electrochimica Acta, 2011, 56, 9048-9055.	5.2	60
85	Mesoporous carbide-derived carbons prepared from different chromium carbides. Microporous and Mesoporous Materials, 2011, 141, 88-93.	4.4	55
86	Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide. Carbon, 2011, 49, 4427-4433.	10.3	76
87	Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. Journal of Power Sources, 2011, 196, 4109-4116.	7.8	94
88	Publisher's Note: Electrical Double Layer Capacitors Based on Two 1-Ethyl-3-methylimidazolium Ionic Liquids with Different Anions [Electrochem. Solid-State Lett., 14, A120 (2011)]. Electrochemical and Solid-State Letters, 2011, 14, S7.	2.2	1
89	Electrochemical Characteristics of Titanium Carbide Derived Carbon 1-Ethyl-3-Methylimidazolium Tetrafluoroborate Electrical Double Layer Capacitors. ECS Transactions, 2010, 25, 15-23.	0.5	6
90	Substituted phosphonium cation based electrolytes for nonaqueous electrical double-layer capacitors. Journal of Materials Research, 2010, 25, 1447-1450.	2.6	15

#	Article	IF	CITATIONS
91	Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon. Electrochimica Acta, 2010, 55, 3138-3143.	5.2	99
92	Novel doubly charged cation based electrolytes for non-aqueous supercapacitors. Electrochemistry Communications, 2010, 12, 535-539.	4.7	37
93	Characterization of Non-Aqueous Supercapacitors Based on Titanium Carbide Derived Carbon Electrodes and Novel Doubly Charged Cation Based Salts. ECS Transactions, 2010, 33, 47-54.	0.5	0
94	Electrochemical Behavior of Carbide Derived Carbons in LiPF6 and LiCF3SO3 Nonaqueous Electrolytes. ECS Transactions, 2010, 28, 65-75.	0.5	4
95	Electrochemical Characteristics of Carbide-Derived Carbonâ^£1-Ethyl-3-methylimidazolium Tetrafluoroborate Supercapacitor Cells. Journal of the Electrochemical Society, 2010, 157, A272.	2.9	102
96	Comparison of Electrospun and Commercially Available Separator Materials for Supercapacitors. ECS Transactions, 2009, 19, 23-32.	0.5	5
97	Influence of Mesoporous Separator Properties on the Parameters of Electrical Double-Layer Capacitor Single Cells. Journal of the Electrochemical Society, 2009, 156, A334.	2.9	48
98	Electrochemical impedance study of hydrogen evolution on Bi(001) electrode in the HClO4 aqueous solutions. Journal of Solid State Electrochemistry, 2009, 13, 745-754.	2.5	8
99	LiPF6 based ethylene carbonate–dimethyl carbonate electrolyte for high power density electrical double layer capacitor. Electrochimica Acta, 2009, 54, 4587-4594.	5.2	61
100	Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 2009, 630, 55-62.	3.8	72
101	Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide. Carbon, 2009, 47, 23-29.	10.3	128
102	In situ infrared spectroscopic characterization of a bismuth–ethanol interface. Electrochimica Acta, 2008, 53, 8166-8171.	5.2	9
103	Micro- and Mesoporous Carbide-Derived Carbon Materials and Polymer Membranes for Supercapacitors. ECS Transactions, 2008, 16, 57-67.	0.5	14
104	Characterization of Activated Nanoporous Carbon as Electrical Double Layer Capacitor Electrode Materials. ECS Transactions, 2007, 3, 39-48.	0.5	2
105	Advanced nanostructured carbon materials for electrical double layer capacitors. Journal of Physics: Conference Series, 2007, 93, 012002.	0.4	2
106	On the porosity of polypyrrole films. Synthetic Metals, 2007, 157, 1085-1090.	3.9	44
107	Micro- and Mesoporous Carbon Based Electrode Materials for Electrical Double Layer Capacitors. ECS Transactions, 2007, 6, 269-278.	0.5	6
108	Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 2007, 45, 1226-1233.	10.3	242

#	Article	IF	CITATIONS
109	Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. Carbon, 2007, 45, 2717-2722.	10.3	109
110	Electrochemical Characteristics of Nanoporous Carbide-Derived Carbon Materials in Various Nonaqueous Electrolyte Solutions. Journal of the Electrochemical Society, 2006, 153, A113.	2.9	64
111	Analysis of electrochemical impedance of polypyrrole sulfate and polypyrrole perchlorate films. Synthetic Metals, 2006, 156, 488-494.	3.9	45
112	Use of organic esters as co-solvents for electrical double layer capacitors with low temperature performance. Journal of Electroanalytical Chemistry, 2006, 588, 285-295.	3.8	82
113	Organic carbonate–Organic ester-based non-aqueous electrolytes for electrical double layer capacitors. Electrochemistry Communications, 2005, 7, 510-514.	4.7	58
114	Influence of nanoporous carbon electrode thickness on the electrochemical characteristics of a nanoporous carbon tetraethylammonium tetrafluoroborate in acetonitrile solution interface. Journal of Solid State Electrochemistry, 2004, 8, 224-237.	2.5	48
115	Influence of electrolyte characteristics on the electrochemical parameters of electrical double layer capacitors. Journal of Solid State Electrochemistry, 2004, 8, 488-496.	2.5	41
116	Influence of solvent nature on the electrochemical characteristics of nanoporous carbon 1 M (C2H5)3CH3NBF4 electrolyte solution interface. Surface Science, 2004, 560, 145-157.	1.9	40
117	Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors. Journal of Electroanalytical Chemistry, 2004, 562, 33-42.	3.8	104
118	Adsorption kinetics of tetrabutylammonium cations on Bi() plane. Journal of Electroanalytical Chemistry, 2004, 569, 241-256.	3.8	12
119	Voltammetric and electrochemical impedance spectroscopy studies of the nanoporous carbon 1 M (C2H5)3CH3NBF4 electrolyte solution interface. Journal of Electroanalytical Chemistry, 2004, 569, 257-269.	3.8	44
120	Influence of the solvent properties on the characteristics of a double layer capacitor. Journal of Power Sources, 2004, 133, 320-328.	7.8	219
121	Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochemistry Communications, 2004, 6, 313-318.	4.7	135
122	Adsorption of 1-heptanol on bismuth single-crystal plane electrodes. Journal of Solid State Electrochemistry, 2003, 7, 189-200.	2.5	4
123	Electrochemical properties of nanoporous carbon electrodes in various nonaqueous electrolytes. Journal of Solid State Electrochemistry, 2003, 7, 91-105.	2.5	67
124	Adsorption kinetics of dodecyl sulfate anions on the bismuth plane. Journal of Electroanalytical Chemistry, 2003, 553, 1-19.	3.8	27
125	Adsorption kinetics of d-ribose on the bismuth(001) plane. Journal of Electroanalytical Chemistry, 2003, 548, 27-39.	3.8	5
126	Investigation of the surface topography and double layer characteristics of variously pre-treated antimony single crystal electrodes. Surface Science, 2003, 532-535, 1121-1126.	1.9	8

#	Article	IF	CITATIONS
127	Influence of Surface Charge Density on the Electrochemically Derived Surface Roughness of Bi Electrodes. Journal of the Electrochemical Society, 2003, 150, E175.	2.9	12
128	Adsorption Kinetics of Normal-Heptanol on the Bismuth Single Crystal Planes. Russian Journal of Electrochemistry, 2002, 38, 8-19.	0.9	12
129	Adsorption of D-ribose on bismuth single crystal plane electrodes. Electrochimica Acta, 2001, 47, 967-975.	5.2	11
130	Adsorption of 2-methyl-2-butanol on bismuth single crystal planes. Journal of Electroanalytical Chemistry, 2001, 515, 33-44.	3.8	3
131	Adsorption kinetics of 2-methyl-2-butanol on bismuth single crystal planes. Journal of Electroanalytical Chemistry, 2001, 515, 17-32.	3.8	29
132	Influence of charge density and electrolyte concentration on the electrical double layer characteristics at rough cadmium electrodes. Electrochimica Acta, 2000, 46, 185-191.	5.2	30
133	Orientation of organic compounds at single-crystal bismuth electrodes. Electrochimica Acta, 1999, 44, 4707-4720.	5.2	11
134	The zero charge potential shift upon adsorption of various organic compounds at bismuth solution interface. Electrochimica Acta, 1999, 45, 935-943.	5.2	3
135	Adsorption of 1-pentanol on bismuth single-crystal plane electrodes. Journal of Solid State Electrochemistry, 1999, 3, 277-287.	2.5	5
136	Surface roughness of bismuth, antimony and cadmium electrodes. Electrochimica Acta, 1998, 44, 373-383.	5.2	42
137	Adsorption of normal hexanol on bismuth single crystal plane electrodes. Journal of Electroanalytical Chemistry, 1998, 442, 189-200.	3.8	11
138	Adsorption of adenosine on (111) and (001) bismuth single crystal planes. Journal of Electroanalytical Chemistry, 1998, 449, 153-163.	3.8	6
139	Adsorption of pyridine on the (111), (001) and (00) faces of bismuth. Journal of Electroanalytical Chemistry, 1997, 425, 25-37.	3.8	30
140	Adsorption of propanol on bismuth single-crystal-plane electrodes. Journal of Electroanalytical Chemistry, 1997, 436, 141-153.	3.8	11
141	Electric double layer structure and adsorption of cyclohexanol on single crystal cadmium, antimony and bismuth electrodes. Electrochimica Acta, 1997, 42, 771-783.	5.2	60
142	Influence of surface pretreatment of bismuth and cadmium electrodes to the electric double layer and adsorption characteristics of organic compounds. Electrochimica Acta, 1997, 42, 2861-2879.	5.2	30
143	Adsorption of isomers of butanol on bismuth single crystal plane electrodes. Journal of Electroanalytical Chemistry, 1996, 413, 175-185.	3.8	22
144	Influence of the surface structure of cadmium electrodes on the electric double layer parameters in aqueous surface-inactive electrolyte solutions. Journal of Electroanalytical Chemistry, 1996, 413, 111-121.	3.8	17