Carol Shennan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/670503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamental Differences Between Conventional and Organic Tomato Agroecosystems in California. , 1995, 5, 1098-1112.		365
2	Changes in Soil Chemical Properties Resulting from Organic and Lowâ€Input Farming Practices. Agronomy Journal, 1998, 90, 662-671.	1.8	332
3	Tomato Fruit Yields and Quality under Water Deficit and Salinity. Journal of the American Society for Horticultural Science, 1991, 116, 215-221.	1.0	227
4	Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 717-739.	4.0	162
5	Nitrogen, weeds and water as yield-limiting factors in conventional, low-input, and organic tomato systems. Agriculture, Ecosystems and Environment, 1999, 73, 257-270.	5.3	149
6	Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Protection, 2012, 39, 33-40.	2.1	121
7	Transforming U.S. Agriculture. Science, 2011, 332, 670-671.	12.6	113
8	Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiologia Plantarum, 1991, 83, 177-185.	5.2	108
9	Transition from conventional to low-input agriculture changes soil fertility and biology. California Agriculture, 1994, 48, 20-26.	0.8	105
10	Exploring warm-season cover crops as carbon sources for anaerobic soil disinfestation (ASD). Plant and Soil, 2012, 355, 149-165.	3.7	102
11	Variables Associated with Corky Root and Phytophthora Root Rot of Tomatoes in Organic and Conventional Farms. Phytopathology, 1993, 83, 581.	2.2	96
12	ANAEROBIC SOIL DISINFESTATION FOR SOIL BORNE DISEASE CONTROL IN STRAWBERRY AND VEGETABLE SYSTEMS: CURRENT KNOWLEDGE AND FUTURE DIRECTIONS. Acta Horticulturae, 2014, , 165-175.	0.2	90
13	Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathology, 2018, 67, 51-66.	2.4	86
14	Nutritional Management of Microbial Polysaccharide Production and Aggregation in an Agricultural Soil. Soil Science Society of America Journal, 1995, 59, 1587-1594.	2.2	85
15	Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization as a Methyl Bromide Alternative: Vegetable Crop Performance and Soil Nutrient Dynamics. Plant and Soil, 2014, 378, 365-381.	3.7	85
16	Selenomethionine Uptake by Wheat Seedlings. Agronomy Journal, 1990, 82, 1127-1130.	1.8	79
17	Organic and Conventional Agriculture: A Useful Framing?. Annual Review of Environment and Resources, 2017, 42, 317-346.	13.4	74
18	Differential gauging and tracer tests resolve seepage fluxes in a strongly-losing stream. Journal of Hydrology, 2006, 330, 235-248.	5.4	71

#	Article	IF	CITATIONS
19	Coffee landscapes as refugia for native woody biodiversity as forest loss continues in southwest Ethiopia. Biological Conservation, 2014, 169, 384-391.	4.1	67
20	Shortâ€Term Effects of Cover Crop Incorporation on Soil Carbon Pools and Nitrogen Availability. Soil Science Society of America Journal, 1997, 61, 901-911.	2.2	59
21	Effects of salinity on root growth and death dynamics of tomato, Lycopersicon esculentum Mill New Phytologist, 1992, 121, 71-79.	7.3	56
22	Salt tolerance in Aster tripolium L. I. The effect of salinity on growth. Plant, Cell and Environment, 1987, 10, 59-65.	5.7	55
23	Impacts of gypsum and winter cover crops on soil physical properties and crop productivity when irrigated with saline water. Agricultural Water Management, 2000, 45, 55-71.	5.6	55
24	Prospects for forest-based ecosystem services in forest-coffee mosaics as forest loss continues in southwestern Ethiopia. Applied Geography, 2014, 50, 144-151.	3.7	54
25	Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. Applied Soil Ecology, 2018, 127, 74-86.	4.3	51
26	Cover Crops, Nitrogen Cycling, and Soil Properties in Semi-irrigated Vegetable Production Systems. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 749-754.	1.0	51
27	Improving irrigated rice production in the Senegal River Valley through experiential learning and innovation. Agricultural Systems, 2012, 109, 101-112.	6.1	50
28	Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill New Phytologist, 1991, 119, 275-284.	7.3	49
29	Anaerobic Soil Disinfestation and Soilborne Pest Management. Soil Biology, 2015, , 277-305.	0.8	49
30	Effect of high external NaCl concentration on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plant, Cell and Environment, 1988, 11, 291-300.	5.7	47
31	Farmer Seed Exchange and Crop Diversity in a Changing Agricultural Landscape in the Southern Highlands of Ethiopia. Human Ecology, 2013, 41, 477-485.	1.4	45
32	Policy and demographic factors shape deforestation patterns and socio-ecological processes in southwest Ethiopian coffee agroecosystems. Applied Geography, 2014, 54, 149-159.	3.7	45
33	Meeting the Nitrogen Needs of Processing Tomatoes through Winter Cover Cropping. Journal of Production Agriculture, 1991, 4, 330-334.	0.4	44
34	The effect of nitrogen source and crop rotation on the growth and yield of processing tomatoes. Nutrient Cycling in Agroecosystems, 1996, 47, 271-282.	2.2	43
35	Application of epic model to nitrogen cycling in irrigated processing tomatoes under different management systems. Agricultural Systems, 1998, 56, 391-414.	6.1	42
36	Effects of soil management on crop nitrogen and insect damage in organic vs. conventional tomato fields. Agriculture, Ecosystems and Environment, 1996, 57, 179-187.	5.3	39

#	Article	IF	CITATIONS
37	Feasibility of Cyclic Reuse of Saline Drainage in a Tomato-Cotton Rotation. Journal of Environmental Quality, 1995, 24, 476-486.	2.0	38
38	Yield, water productivity and nutrient balances under the System of Rice Intensification and Recommended Management Practices in the Sahel. Field Crops Research, 2012, 130, 155-167.	5.1	37
39	Effects of land-use changes on woody species distribution and above-ground carbon storage of forest-coffee systems. Agriculture, Ecosystems and Environment, 2014, 197, 21-30.	5.3	37
40	Local Ecosystem Service Use and Assessment Vary with Socio-ecological Conditions: A Case of Native Coffee-Forests in Southwestern Ethiopia. Human Ecology, 2014, 42, 873-883.	1.4	32
41	Relative Densities of Natural Enemy and Pest Insects Within California Hedgerows. Environmental Entomology, 2013, 42, 688-702.	1.4	31
42	Comparing agroforestry systems' ex ante adoption potential and ex post adoption: on-farm participatory research from southern Malawi. Agroforestry Systems, 2010, 79, 253-266.	2.0	29
43	Human and Environmental Factors Affect Patterns of Crop Diversity in an Ethiopian Highland Agroecosystem. Professional Geographer, 2010, 62, 395-408.	1.8	29
44	Genotypic trade-offs between water productivity and weed competition under the System of Rice Intensification in the Sahel. Agricultural Water Management, 2012, 115, 156-166.	5.6	29
45	OPTIMIZING ANAEROBIC SOIL DISINFESTATION FOR CALIFORNIA STRAWBERRIES. Acta Horticulturae, 2014, , 215-220.	0.2	29
46	TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields. California Agriculture, 2013, 67, 139-146.	0.8	28
47	Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiology and Biochemistry, 1999, 37, 569-576.	5.8	27
48	Modeling nitrogen cycling in tomato–safflower and tomato–wheat rotations. Agricultural Systems, 1999, 60, 123-135.	6.1	27
49	Impacts of groundcover management systems on yield, leaf nutrients, weeds, and arthropods of tart cherry in Michigan, USA. Agriculture, Ecosystems and Environment, 2008, 125, 239-245.	5.3	27
50	Uptake and distribution of selenium in tomato plants as affected by genotype and sulphate supply. Journal of Plant Nutrition, 1999, 22, 1613-1635.	1.9	26
51	Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream. Journal of the North American Benthological Society, 2007, 26, 191-206.	3.1	25
52	Developmental changes in tomato fruit composition in response to water deficit and salinity. Physiologia Plantarum, 1991, 83, 177-185.	5.2	25
53	Changes in Soil Water Storage in Winter Fallowed and Cover Cropped Soils. Agroecology and Sustainable Food Systems, 1999, 15, 19-31.	0.9	24
54	Complete chloroplast genome sequencing of ten wild Fragaria species in China provides evidence for phylogenetic evolution of Fragaria. Genomics, 2021, 113, 1170-1179.	2.9	24

#	Article	IF	CITATIONS
55	Variation in [75 Se]selenate uptake and partitioning among tomato cultivars and wild species. New Phytologist, 1990, 115, 523-530.	7.3	23
56	Profiles of California farmers by degree of IPM use as indicated by self-descriptions in a phone survey. Agriculture, Ecosystems and Environment, 2001, 84, 267-275.	5.3	23
57	Effect of Anaerobic Soil Disinfestation and Mustard Seed Meal for Control of Charcoal Rot in California Strawberries. International Journal of Fruit Science, 2016, 16, 59-70.	2.4	23
58	Salt tolerance in Aster tripolium L. II. Ionic regulation. Plant, Cell and Environment, 1987, 10, 67-74.	5.7	21
59	Cover Crops for Saline Soils. Journal of Agronomy and Crop Science, 1999, 183, 167-178.	3.5	21
60	How Natural Enemies and Cabbage Aphid (<i>Brevicoryne brassicae</i> L.) Population Dynamics Affect Organic Broccoli Harvest. Environmental Entomology, 2006, 35, 94-101.	1.4	21
61	Improving recommendations resulting from on-farm research: agroforestry, risk, profitability and vulnerability in southern Malawi. International Journal of Agricultural Sustainability, 2010, 8, 290-304.	3.5	19
62	Encouraging technology adoption using ICTs and farm trials in Senegal: Lessons for gender equity and scaled impact. World Development, 2021, 146, 105620.	4.9	18
63	DOES SIZE MATTER? A CRITICAL REVIEW OF META-ANALYSIS IN AGRONOMY. Experimental Agriculture, 2019, 55, 200-229.	0.9	17
64	Salinity Effects on Root Growth and Senescence in Tomato and the Consequences for Severity of Phytophthora Root Rot Infection. Journal of the American Society for Horticultural Science, 1994, 119, 458-463.	1.0	17
65	Nitrogen Contribution of Legume/Cereal Mixed Cover Crops and Organic Fertilizers to an Organic Broccoli Crop. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1154-1162.	1.0	16
66	Land Use and Stream Nitrogen Concentrations in Agricultural Watersheds Along the Central Coast of California. Scientific World Journal, The, 2001, 1, 615-622.	2.1	15
67	Integrated Biological and Cultural Practices Can Reduce Crop Rotation Period of Organic Strawberries. Agroecology and Sustainable Food Systems, 2014, 38, 603-631.	1.9	13
68	Analysis of Environmental Variables and Carbon Input on Soil Microbiome, Metabolome and Disease Control Efficacy in Strawberry Attributable to Anaerobic Soil Disinfestation. Microorganisms, 2021, 9, 1638.	3.6	12
69	Anaerobic Soil Disinfestation and <i>Brassica</i> Seed Meal Amendment Alter Soil Microbiology and System Resistance. International Journal of Fruit Science, 2016, 16, 47-58.	2.4	11
70	Use of a summer cover crop as a partial carbon source for anaerobic soil disinfestation in coastal California. Acta Horticulturae, 2020, , 37-44.	0.2	11
71	Organic N Fertilizers and Irrigation Influence Organic Broccoli Production in Two Regions of California. International Journal of Vegetable Science, 2007, 12, 27-46.	0.2	9
72	Anaerobic soil disinfestation (ASD): a strategy for control of soil borne diseases in strawberry production. Acta Horticulturae, 2016, , 113-120.	0.2	9

#	Article	IF	CITATIONS
73	Integrating broccoli rotation, mustard meal, and anaerobic soil disinfestation to manage verticillium wilt in strawberry. Crop Protection, 2021, 146, 105659.	2.1	9
74	Strawberry Cultivars and Mycorrhizal Inoculants Evaluated in California Organic Production Fields. Crop Management, 2005, 4, 1-10.	0.3	8
75	Anaerobic soil disinfestation: areawide project on obstacles and adoption. Acta Horticulturae, 2020, , 23-36.	0.2	7
76	Salt tolerance in Aster tripolium L. III. Na and K fluxes in intact seedlings. Plant, Cell and Environment, 1987, 10, 75-81.	5.7	6
77	Foliar-Applied Seaweed and Fish Powder Do Not Improve Yield and Fruit Quality of Organically Grown Processing Tomatoes. Biological Agriculture and Horticulture, 2000, 18, 15-27.	1.0	6
78	On-farm trials identify adaptive management options for rainfed agriculture in West Africa. Agricultural Systems, 2020, 182, 102819.	6.1	6
79	INTEGRATED ROTATION SYSTEMS FOR SOILBORNE DISEASE, WEED AND FERTILITY MANAGEMENT IN STRAWBERRY/VEGETABLE PRODUCTION. Acta Horticulturae, 2014, , 269-274.	0.2	4
80	The economic viability of suppressive crop rotations for the control of verticillium wilt in organic strawberry production. Agroecology and Sustainable Food Systems, 2019, 43, 984-1008.	1.9	4
81	Effects of crop rotation, anaerobic soil disinfestation, and mustard seed meal on disease severity and organic strawberry production in California. Acta Horticulturae, 2020, , 63-70.	0.2	4
82	Suppression of tomato bacterial wilt by anaerobic soil disinfestation and associations with production of antagonistic compounds. Plant and Soil, 2022, 477, 539-552.	3.7	4
83	Growth and nutrient composition of Ca2+ use efficient and Ca2+ use inefficient genotypes of tomato. Plant Physiology and Biochemistry, 1999, 37, 559-567.	5.8	3
84	Sustainable and conventional intensification: how gendered livelihoods influence farming practice adoption in the Vietnamese Mekong River Delta. Environment, Development and Sustainability, 2021, 23, 7089-7116.	5.0	3
85	Tuning stakeholder expectations in organic strawberry production – A sixteen-year case study of co-development of a strawberry knowledge network in California. Journal of Cleaner Production, 2021, 323, 129192.	9.3	3
86	Growth and nutrient composition of Ca2+ use efficient and Ca2+ use inefficient genotypes of tomato. Plant Physiology and Biochemistry, 1999, 37, 559-567.	5.8	3
87	THE ORGANIC RESEARCH NETWORK PROJECT ON THE CENTRAL COAST OF CALIFORNIA. Acta Horticulturae, 2013, , 35-45.	0.2	2
88	Plant-Derived Carbon Sources for Anaerobic Soil Disinfestation in Southern California. Global Journal of Agricultural Innovation Research & Development, 0, 8, 169-175.	0.2	2
89	CAL-collaborative organic research and extension network: on-farm research to improve strawberry/ vegetable rotation systems in coastal California. Acta Horticulturae, 2016, , 283-290.	0.2	1
90	Assessing Anaerobic Soil Disinfestation as a Control Tactic for Delia radicum (Diptera: Anthomyiidae) in California Brussels Sprouts. Environmental Entomology, 2019, 48, 633-640.	1.4	0