Kenneth Dorshkind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704930/publications.pdf

Version: 2024-02-01

50 papers

5,757 citations

28 h-index 206112 48 g-index

50 all docs

50 docs citations

50 times ranked

7400 citing authors

#	Article	IF	CITATIONS
1	Age-related changes in lymphocyte development and function. Nature Immunology, 2004, 5, 133-139.	14.5	1,064
2	Causes, consequences, and reversal of immune system aging. Journal of Clinical Investigation, 2013, 123, 958-965.	8.2	570
3	Regulation of Hemopoiesis by Bone Marrow Stromal Cells and Their Products. Annual Review of Immunology, 1990, 8, 111-137.	21.8	495
4	Identification of a B-1 B cell–specified progenitor. Nature Immunology, 2006, 7, 293-301.	14.5	386
5	The ageing immune system: is it ever too old to become young again?. Nature Reviews Immunology, 2009, 9, 57-62.	22.7	362
6	B-1 B Cell Development in the Fetus and Adult. Immunity, 2012, 36, 13-21.	14.3	300
7	Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1468-1473.	7.1	243
8	The Protean Nature of Cells in the B Lymphocyte Lineage. Immunity, 2007, 26, 703-714.	14.3	216
9	Reduction in the Developmental Potential of Intrathymic T Cell Progenitors with Age. Journal of Immunology, 2004, 173, 245-250.	0.8	188
10	Bipotential B-macrophage progenitors are present in adult bone marrow. Nature Immunology, 2001, 2, 83-88.	14.5	173
11	Anterior pituitary hormones, stress, and immune system homeostasis. BioEssays, 2001, 23, 288-294.	2.5	134
12	Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology, 2007, 7, 213-219.	22.7	130
13	New perspectives in B-1 B cell development and function. Trends in Immunology, 2006, 27, 428-433.	6.8	120
14	Effects of Aging on the Common Lymphoid Progenitor to Pro-B Cell Transition. Journal of Immunology, 2006, 176, 1007-1012.	0.8	107
15	Fate Decisions Regulating Bone Marrow and Peripheral B Lymphocyte Development. Advances in Immunology, 2007, 95, 1-50.	2.2	97
16	Effects of Insulin-Like Growth Factor Administration and Bone Marrow Transplantation on Thymopoiesis in Aged Mice1. Endocrinology, 1998, 139, 4120-4126.	2.8	96
17	Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16 ^{Ink4a} and Arf. Genes and Development, 2008, 22, 3115-3120.	5.9	89
18	Effects of aging on early B―and Tâ€cell development. Immunological Reviews, 2005, 205, 7-17.	6.0	85

#	Article	IF	CITATIONS
19	Age-associated declines in immune system development and function: causes, consequences, and reversal. Current Opinion in Immunology, 2009, 21, 404-407.	5.5	85
20	Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood, 2000, 96, 917-924.	1.4	77
21	Plasma Cells Are Obligate Effectors of Enhanced Myelopoiesis in Aging Bone Marrow. Immunity, 2019, 51, 351-366.e6.	14.3	76
22	Age-related defects in B lymphopoiesis underlie the myeloid dominance of adult leukemia. Blood, 2007, 110, 1831-1839.	1.4	71
23	Reduced production of B-1–specified common lymphoid progenitors results in diminished potential of adult marrow to generate B-1 cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13700-13704.	7.1	71
24	Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity, 2016, 45, 527-539.	14.3	64
25	Reassessing the role of growth hormone and sex steroids in thymic involution. Clinical Immunology, 2006, 118, 117-123.	3.2	62
26	Do haematopoietic stem cells age?. Nature Reviews Immunology, 2020, 20, 196-202.	22.7	50
27	Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports, 2019, 12, 584-596.	4.8	45
28	Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood, 2012, 119, 5715-5721.	1.4	39
29	Multilineage development from adult bone marrow cells. Nature Immunology, 2002, 3, 311-313.	14.5	29
30	Evolving Patterns of Lymphopoiesis from Embryogenesis through Senescence. Immunity, 2006, 24, 659-662.	14.3	25
31	To T or not to T: reassessing the common lymphoid progenitor. Nature Immunology, 2003, 4, 100-101.	14.5	22
32	Genetic regulation of thymocyte progenitor aging. Seminars in Immunology, 2012, 24, 303-308.	5.6	20
33	Murine B-1 B Cell Progenitors Initiate B-Acute Lymphoblastic Leukemia with Features of High-Risk Disease. Journal of Immunology, 2014, 192, 5171-5178.	0.8	20
34	Identification of B/macrophage progenitors in adult bone marrow. Seminars in Immunology, 2002, 14, 371-376.	5.6	18
35	Effects of housing on the thymic deficiency in dwarf mice and its reversal by growth hormone administration. Clinical Immunology, 2003, 109, 197-202.	3.2	18
36	Aging, B lymphopoiesis, and patterns of leukemogenesis. Experimental Gerontology, 2007, 42, 391-395.	2.8	17

#	Article	IF	CITATIONS
37	Stromal cell–dependent growth of B-1 B cell progenitors in the absence of direct contact. Nature Protocols, 2006, 1, 1140-1144.	12.0	16
38	Immature B-cell progenitors survive oncogenic stress and efficiently initiate Ph+ B-acute lymphoblastic leukemia. Blood, 2010, 116, 2522-2530.	1.4	12
39	Differential Expression of PU.1 and Key T Lineage Transcription Factors Distinguishes Fetal and Adult T Cell Development. Journal of Immunology, 2018, 200, 2046-2056.	0.8	11
40	Use of Busulfan to Condition Mice for Bone Marrow Transplantation. STAR Protocols, 2020, 1, 100159.	1.2	11
41	Understanding how pre-B cells come of age. Nature Immunology, 2000, 1, 369-370.	14.5	8
42	Human pediatric B-cell acute lymphoblastic leukemias can be classified as B-1 or B-2-like based on a minimal transcriptional signature. Experimental Hematology, 2020, 90, 65-71.e1.	0.4	7
43	Developmental relationships between B-1 and B-2 progenitors. Cell Cycle, 2011, 10, 3810-3811.	2.6	6
44	The stromal cell line S17 supports the growth of lipopolysaccharide-stimulated CBA/N spleen cell coloniesin vitro. European Journal of Immunology, 1992, 22, 1001-1006.	2.9	5
45	The Expansion of Thymopoiesis in Neonatal Mice Is Dependent on Expression of High Mobility Group A 2 Protein (Hmga2). PLoS ONE, 2015, 10, e0125414.	2.5	5
46	Got MLL? Definitive Hematopoiesis Requires MLL Gene Expression. Molecular Cell, 2004, 13, 765-766.	9.7	4
47	Linking the hematopoietic microenvironment to imatinib-resistant Ph ⁺ B-ALL: Figure 1 Genes and Development, 2007, 21, 2249-2252.	5.9	4
48	Stem cells and lineage plasticity: the challenge to existing paradigms. Immunological Reviews, 2002, 187, 5-8.	6.0	3
49	B-1 B Cell Development. , 2016, , 52-56.		1
50	CREB Regulates Early Myelopoiesis and Myeloid Engraftment Blood, 2010, 116, 1452-1452.	1.4	0