Sara Ducci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704715/publications.pdf Version: 2024-02-01

SADA DUCCI

#	Article	IF	CITATIONS
1	Generation of quantum states of light in nonlinear AlGaAs chips: engineering and applications. Photoniques, 2021, , 28-34.	0.1	2
2	Flexible entanglement-distribution network with an AlGaAs chip for secure communications. Npj Quantum Information, 2021, 7, .	6.7	40
3	Anyonic Two-Photon Statistics with a Semiconductor Chip. ACS Photonics, 2021, 8, 2764-2769.	6.6	11
4	Generation of time-frequency grid state with integrated biphoton frequency combs. , 2021, , .		0
5	Anyonic two-photon statistics and hybrid entanglement with a semiconductor chip. , 2021, , .		0
6	Producing a delocalized frequency-time Schrödinger-cat-like state with Hong-Ou-Mandel interferometry. Physical Review A, 2020, 102, .	2.5	7
7	Generation of a time-frequency grid state with integrated biphoton frequency combs. Physical Review A, 2020, 102, .	2.5	28
8	Generation and symmetry control of quantum frequency combs. Npj Quantum Information, 2020, 6, .	6.7	30
9	Engineering two-photon wavefunction and exchange statistics in a semiconductor chip. Optica, 2020, 7, 316.	9.3	31
10	Generation and Manipulation of Quantum Frequency States of Light with AlGaAs Chips. , 2019, , .		0
11	Generation and manipulation of quantum frequency states of light with AlGaAs chips. , 2019, , .		0
12	Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping. Journal of Optics (United Kingdom), 2018, 20, 05LT01.	2.2	11
13	On-chip III-V monolithic integration of heralded single photon sources and beamsplitters. Applied Physics Letters, 2018, 112, .	3.3	18
14	III-V integrated nonlinear photonic chips for the generation and manipulation of quantum states of light. , 2018, , .		0
15	Les sources intégrées de photons intriqués au coeur des technologies quantiques. Photoniques, 2018, , 25-28.	0.1	0
16	Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching. Nature Communications, 2017, 8, 14267.	12.8	39
17	Quantum communication between remote mechanical resonators. Physical Review A, 2017, 95, .	2.5	14
18	Semiconductor devices for entangled photon pair generation: a review. Reports on Progress in Physics, 2017, 80, 076001.	20.1	117

#	Article	IF	CITATIONS
19	AlGaAs photonic devices for quantum information. , 2017, , .		Ο
20	On-chip generation of frequency-entangled qudits. , 2017, , .		0
21	On-chip monolithic integration of heralded single photons sources and beam splitters. , 2017, , .		0
22	Record single-to-noise ratio in active and passive AlGaAs sources of entangled photons. , 2017, , .		0
23	Multi-User Quantum Key Distribution With Entangled Photons From A Semiconductor Chip. , 2017, , .		0
24	Electrically Injected Twin Photon Emitting Lasers at Room Temperature. Technologies, 2016, 4, 24.	5.1	5
25	Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica, 2016, 3, 143.	9.3	49
26	Multi-user quantum key distribution with entangled photons from an AlGaAs chip. Quantum Science and Technology, 2016, 1, 01LT02.	5.8	29
27	Multi-User Quantum Key Distribution with Entangled Photons from a Semiconductor Chip. , 2016, , .		0
28	Toolbox for continuous-variable entanglement production and measurement using spontaneous parametric down-conversion. Physical Review A, 2015, 92, .	2.5	19
29	AlGaAs guided-wave optical parametric oscillator: results and perspectives. , 2015, , .		0
30	Ultra-porous alumina for microwave planar antennas. International Journal of Higher Education Management, 2015, 1, 93-99.	1.3	4
31	High-frequency nano-optomechanical disk resonators in liquids. Nature Nanotechnology, 2015, 10, 810-816.	31.5	101
32	Improved optomechanical disk resonator sitting on a pedestal mechanical shield. New Journal of Physics, 2015, 17, 023016.	2.9	17
33	Photon pair sources in AlGaAs: from electrical injection to quantum state engineering. Journal of Modern Optics, 2015, 62, 1739-1745.	1.3	12
34	Origin of optical losses in gallium arsenide disk whispering gallery resonators. Optics Express, 2015, 23, 19656.	3.4	31
35	Integrated AlGaAs Source of Highly Indistinguishable and Energy-Time Entangled Photons. , 2015, , .		0
36	AlGaAs guided-wave second-harmonic generation at 223  μm from a quantum cascade laser. Applied Optics, 2014, 53, 5615.	1.8	3

#	Article	IF	CITATIONS
37	Integrated AlGaAs sources of quantum correlated photon pairs. , 2014, , .		Ο
38	Second-harmonic generation in AlGaAs microdisks in the telecom range. Optics Letters, 2014, 39, 3062.	3.3	60
39	A laser diode for integrated photon pair generation at telecom wavelength. , 2014, , .		Ο
40	Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 2014, 22, 14072.	3.4	77
41	Toward an AlGaAs/AlOx near-infrared integrated optical parametric oscillator. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 542.	2.1	13
42	Polarization-entanglement generation and control in a counterpropagating phase-matching geometry. Physical Review A, 2014, 89, .	2.5	6
43	High-resolution spectral characterization of two photon states via classical measurements. Laser and Photonics Reviews, 2014, 8, L76-L80.	8.7	81
44	Quantum Dot parametric source. Optics Communications, 2014, 327, 27-30.	2.1	3
45	Electrically Injected Photon-Pair Source at Room Temperature. Physical Review Letters, 2014, 112, 183901.	7.8	78
46	High-resolution measurement of the joint spectral density of quantum correlated photon pairs. , 2014, , ,		0
47	Sources de photons jumeaux : des débats sur l'intrication aux nouvelles technologies quantiques. Photoniques, 2014, , 24-28.	0.1	0
48	Near-infrared optical parametric oscillator in a III-V semiconductor waveguide. Applied Physics Letters, 2013, 103, .	3.3	35
49	Microring Diode Laser for THz Generation. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 472-478.	3.1	1
50	AlGaAs microdisk cavities for second-harmonic generation. Optics Letters, 2013, 38, 3965.	3.3	14
51	Near-infrared OPO in an AlGaAs/AlOx waveguide. Proceedings of SPIE, 2013, , .	0.8	0
52	Tunable quantum dot parametric source. Optics Express, 2013, 21, 22367.	3.4	2
53	Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature. Physical Review Letters, 2013, 110, 160502.	7.8	101
54	Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield. Applied Physics Letters, 2013, 103, .	3.3	34

Sara Ducci

#	Article	IF	CITATIONS
55	Direct measurement of the biphoton Wigner function through two-photon interference. Scientific Reports, 2013, 3, 3530.	3.3	33
56	Quantum-dot micropillars for parametric THz emission. Proceedings of SPIE, 2013, , .	0.8	0
57	Semiconductor source of entangled photons at room temperature. Proceedings of SPIE, 2013, , .	0.8	0
58	Non-linear Optomechanical Resonators based on Gallium Arsenide. , 2013, , .		0
59	Direct Bell States Generation on a III-V Semiconductor Chip at Room Temperature. , 2013, , .		1
60	Tuning of a nonlinear THz emitter. Optics Express, 2012, 20, 17678.	3.4	5
61	Optical instability and self-pulsing in silicon nitride whispering gallery resonators. Optics Express, 2012, 20, 29076.	3.4	45
62	Damping of optomechanical disks resonators vibrating in air. Applied Physics Letters, 2012, 100, 242105.	3.3	10
63	A laser diode for integrated photon pair generation at telecom wavelength. , 2012, , .		1
64	Integrated cavity for a GaAs-based OPO. , 2012, , .		0
65	Semiconductor sources of two-photon states at room temperature in the telecom range. Proceedings of SPIE, 2012, , .	0.8	0
66	Optical Characterization of Nonlinear THz Emitters. , 2012, , .		0
67	GaAs nano-optomechanical systems. , 2012, , .		0
68	Wavelength-sized GaAs optomechanical resonators with gigahertz frequency. Applied Physics Letters, 2011, 98, .	3.3	87
69	Efficient parametric generation of counterpropagating two-photon states. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 45.	2.1	34
70	Nearly-degenerate three-wave mixing at 155 μm in oxidized AlGaAs waveguides. Optics Express, 2011, 19, 22582.	3.4	25
71	Large second-harmonic generation at 155 μmin oxidized AlGaAs waveguides. Optics Letters, 2011, 36, 29	553.3	19
72	Semiconductor integrated sources of quantum light at room temperature. Proceedings of SPIE, 2011, ,	0.8	0

#	Article	IF	CITATIONS
73	Critical optical coupling between a GaAs disk and a nanowaveguide suspended on the chip. Applied Physics Letters, 2011, 99, .	3.3	33
74	Spectral study of propagation losses of GaAs/AlOx nonlinear waveguides. , 2011, , .		0
75	GaAs disks optomechanics. , 2011, , .		0
76	A semiconductor ridge microcavity source of quantum light at room temperature. Proceedings of SPIE, 2010, , .	0.8	0
77	GaAs micro-nanodisks probed by a looped fiber taper for optomechanics applications. Proceedings of SPIE, 2010, , .	0.8	16
78	Ultralow loss single-mode silica tapers manufactured by a microheater. Applied Optics, 2010, 49, 2441.	2.1	62
79	Two-photon interference with a semiconductor integrated source at room temperature. Optics Express, 2010, 18, 9967.	3.4	23
80	High Frequency GaAs Nano-Optomechanical Disk Resonator. Physical Review Letters, 2010, 105, 263903.	7.8	155
81	A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state. Journal of Modern Optics, 2009, 56, 232-239.	1.3	26
82	Time-resolved thermal crosstalk characterisation of laser diode arrays. Electronics Letters, 2009, 45, 467.	1.0	0
83	Parametric amplification in GaAs/AlOx waveguide. Applied Physics Letters, 2009, 94, 171110.	3.3	27
84	A Semiconductor Ridge Micro Cavity Generating Counter-propagating Twin Photons. , 2009, , .		0
85	Nonlinear measurement of mid-infrared absorption in AlOx waveguides. Applied Physics Letters, 2008, 92, 151111.	3.3	11
86	Technique for time-resolved thermal characterisation of optoelectronic devices. Electronics Letters, 2007, 43, 417.	1.0	1
87	Time-resolved thermal characterization of semiconductor lasers. Applied Physics Letters, 2007, 90, 021105.	3.3	7
88	Estimation of parametric gain in GaAsâ^•AlOx waveguides by fluorescence and second harmonic generation measurements. Applied Physics Letters, 2007, 91, .	3.3	17
89	Parametric fluorescence in semiconductor waveguides. Comptes Rendus Physique, 2007, 8, 1184-1197.	0.9	3
90	High-efficiency, low-loss AlGaAs/AlOx waveguides for parametric down-conversion. , 2007, , .		0

6

#	Article	IF	CITATIONS
91	Backward difference frequency generation in an AlGaAs waveguide. Applied Physics Letters, 2006, 89, 031106.	3.3	8
92	Semiconductor Waveguide Source of Counterpropagating Twin Photons. Physical Review Letters, 2006, 97, 173901.	7.8	74
93	Semiconductor sources of twin photons for quantum information. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S158-S165.	1.4	2
94	Integrated twin-photon sources for the silicon absorption band: a numerical study. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2331.	2.1	2
95	Nonlinear AlGaAs waveguide for the generation of counterpropagating twin photons in the telecom range. Journal of Applied Physics, 2005, 98, 063103.	2.5	28
96	Measuring propagation loss in a multimode semiconductor waveguide. Journal of Applied Physics, 2005, 97, 073105.	2.5	43
97	Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides. Applied Physics Letters, 2004, 84, 2974-2976.	3.3	62
98	A third-order-mode laser diode for quantum communication. Semiconductor Science and Technology, 2004, 19, L99-L102.	2.0	14
99	Experimental evidence of multimode non-classical light emission using OPOs. Fortschritte Der Physik, 2003, 51, 421-427.	4.4	0
100	Experimental study of the spatial distribution of quantum correlations in a confocal optical parametric oscillator. Physical Review A, 2003, 67, .	2.5	54
101	Quasiphase matched second-harmonic generation from periodic optical randomization of poled polymer channel waveguides. Applied Physics Letters, 2003, 83, 1086-1088.	3.3	15
102	Tailoring the profile and interactions of optical localized structures. Physical Review E, 2002, 65, 066204.	2.1	44
103	Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties. Applied Physics B: Lasers and Optics, 2002, 75, 53-58.	2.2	12
104	Pattern formation in optical parametric oscillators. Physical Review A, 2001, 64, .	2.5	31
105	THE LIQUID CRYSTAL LIGHT VALVE WITH OPTICAL FEEDBACK: A CASE STUDY IN PATTERN FORMATION. Journal of Nonlinear Optical Physics and Materials, 2000, 09, 183-204.	1.8	29
106	Localized versus delocalized patterns in a nonlinear optical interferometer. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 399-405.	1.4	58
107	Order Parameter Fragmentation after a Symmetry-Breaking Transition. Physical Review Letters, 1999, 83, 5210-5213.	7.8	87
108	TRANSPORT INDUCED PATTERN SELECTION IN A NONLINEAR OPTICAL SYSTEM. Journal of Nonlinear Optical Physics and Materials, 1999, 08, 235-252.	1.8	2

#	Article	IF	CITATIONS
109	Optical Diffraction-Free Patterns Induced by a Discrete Translational Transport. Physical Review Letters, 1998, 81, 4128-4131.	7.8	31
110	Semiconductor microcavities for enhanced nonlinear optics interactions. Journal of the European Optical Society-Rapid Publications, 0, 3, .	1.9	21