Jane H Buckner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fewer LAG-3+ T Cells in Relapsing-Remitting Multiple Sclerosis and Type 1 Diabetes. Journal of Immunology, 2022, 208, 594-602.	0.8	18
2	Deep immune phenotyping reveals similarities between aging, Down syndrome, and autoimmunity. Science Translational Medicine, 2022, 14, eabi4888.	12.4	20
3	Th17 cells: from gut homeostasis to CNS pathogenesis. Trends in Immunology, 2022, 43, 167-169.	6.8	4
4	HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nature Genetics, 2022, 54, 393-402.	21.4	40
5	Cutting Edge: Effect of Disease-Modifying Therapies on SARS-CoV-2 Vaccine–Induced Immune Responses in Multiple Sclerosis Patients. Journal of Immunology, 2022, 208, 1519-1524.	0.8	7
6	A simple strategy for sample annotation error detection in cytometry datasets. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 351-360.	1.5	1
7	Crosstalk between CD4 T cells and synovial fibroblasts from human arthritic joints promotes hyaluronan-dependent leukocyte adhesion and inflammatory cytokine expression in vitro. Matrix Biology Plus, 2022, 14, 100110.	3.5	2
8	Mechanismâ€driven strategies for prevention of rheumatoid arthritis. Rheumatology & Autoimmunity, 2022, 2, 109-119.	0.8	9
9	Factors associated with progression to inflammatory arthritis in first-degree relatives of individuals with RA following autoantibody positive screening in a non-clinical setting. Annals of the Rheumatic Diseases, 2021, 80, 154-161.	0.9	21
10	The COVID-19 immune landscape is dynamically and reversibly correlated with disease severity. Journal of Clinical Investigation, 2021, 131, .	8.2	32
11	Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight, 2021, 6, .	5.0	18
12	Early Prognostic Indicators of Subsequent Hospitalization in Patients with Mild COVID-19. Journal of Clinical Medicine, 2021, 10, 1562.	2.4	1
13	Multimodal analysis for human exÂvivo studies shows extensive molecular changes from delays in blood processing. IScience, 2021, 24, 102404.	4.1	22
14	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	21.4	133
15	The dynamic epigenetic regulation of the inactive X chromosome in healthy human B cells is dysregulated in lupus patients. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
16	Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science, 2021, 373, 510-516.	12.6	81
17	Evaluating associations of joint swelling, joint stiffness and joint pain with physical activity in first-degree relatives of patients with rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA), a prospective cohort study. BMJ Open, 2021, 11, e050883.	1.9	2
18	IL-6 receptor blockade does not slow \hat{I}^2 cell loss in new-onset type 1 diabetes. JCI Insight, 2021, 6, .	5.0	25

2

#	Article	IF	CITATIONS
19	The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. Journal of Immunology, 2021, 207, 2710-2719.	0.8	5
20	Multiparameter Analysis Identifies Heterogeneity in Knee Osteoarthritis Synovial Responses. Arthritis and Rheumatology, 2020, 72, 598-608.	5.6	20
21	Gene editing to induce FOXP3 expression in human CD4 ⁺ T cells leads to a stable regulatory phenotype and function. Science Translational Medicine, 2020, 12, .	12.4	73
22	Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight, 2020, 5, .	5.0	97
23	Sudden Cardiac Death due to Coronary Artery Vasculitis in a Patient with Relapsing Polychondritis. Case Reports in Rheumatology, 2020, 2020, 1-6.	0.6	2
24	Abatacept Targets T Follicular Helper and Regulatory T Cells, Disrupting Molecular Pathways That Regulate Their Proliferation and Maintenance. Journal of Immunology, 2019, 202, 1373-1382.	0.8	46
25	Anticyclic Citrullinated Peptide Antibodies 3.1 and Anti-CCP-IgA Are Associated with Increasing Age in Individuals Without Rheumatoid Arthritis. Journal of Rheumatology, 2019, 46, 1556-1559.	2.0	12
26	Dynamic Immune Phenotypes of B and T Helper Cells Mark Distinct Stages of T1D Progression. Diabetes, 2019, 68, 1240-1250.	0.6	21
27	Genetic Mechanisms Highlight Shared Pathways for the Pathogenesis of Polygenic Type 1 Diabetes and Monogenic Autoimmune Diabetes. Current Diabetes Reports, 2019, 19, 20.	4.2	18
28	Autoantibodies against Neurologic Antigens in Nonneurologic Autoimmunity. Journal of Immunology, 2019, 202, 2210-2219.	0.8	22
29	The TYK2-P1104A Autoimmune Protective Variant Limits Coordinate Signals Required to Generate Specialized T Cell Subsets. Frontiers in Immunology, 2019, 10, 44.	4.8	30
30	Citrullinated Aggrecan Epitopes as Targets of Autoreactive <scp>CD</scp> 4+ T Cells in Patients With Rheumatoid Arthritis. Arthritis and Rheumatology, 2019, 71, 518-528.	5.6	47
31	Response to comment on "Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis― Science Immunology, 2018, 3, .	11.9	5
32	IL-6: a cytokine at the crossroads of autoimmunity. Current Opinion in Immunology, 2018, 55, 9-14.	5.5	73
33	Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes—The TrialNet Experience. Diabetes, 2018, 67, 1216-1225.	0.6	29
34	Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. Journal of Autoimmunity, 2018, 92, 47-56.	6.5	43
35	Rheumatoid arthritis and the mucosal origins hypothesis: protection turns toÂdestruction. Nature Reviews Rheumatology, 2018, 14, 542-557.	8.0	219
36	Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Science Immunology, 2017, 2, .	11.9	228

#	Article	IF	CITATIONS
37	The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nature Immunology, 2017, 18, 744-752.	14.5	119
38	Stacking the Deck: Studies of Patients with Multiple Autoimmune Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease. Journal of Immunology, 2017, 199, 3011-3013.	0.8	3
39	B cell–derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. Journal of Experimental Medicine, 2017, 214, 3207-3217.	8.5	168
40	The Autoimmune Risk Variant <i>PTPN22</i> C1858T Alters B Cell Tolerance at Discrete Checkpoints and Differentially Shapes the Naive Repertoire. Journal of Immunology, 2017, 199, 2249-2260.	0.8	29
41	Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia, 2017, 60, 2139-2147.	6.3	59
42	Attenuated IL-2R signaling in CD4 memory T cells of T1D subjects is intrinsic and dependent on activation state. Clinical Immunology, 2017, 181, 67-74.	3.2	9
43	A novel and rapid method to quantify Treg mediated suppression of CD4 T cells. Journal of Immunological Methods, 2017, 449, 15-22.	1.4	17
44	Impact of Age and Antibody Type on Progression From Single to Multiple Autoantibodies in Type 1 Diabetes Relatives. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2881-2886.	3.6	35
45	Functional and Structural Characterization of a Novel HLA-DRB1*04:01-Restricted α-Enolase T Cell Epitope in Rheumatoid Arthritis. Frontiers in Immunology, 2016, 7, 494.	4.8	73
46	Associations of Smoking and Age With Inflammatory Joint Signs Among Unaffected Firstâ€Degree Relatives of Rheumatoid Arthritis Patients: Results From Studies of the Etiology of Rheumatoid Arthritis. Arthritis and Rheumatology, 2016, 68, 1828-1838.	5.6	46
47	Distinct T cell signatures define subsets of patients with multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e278.	6.0	19
48	B cell IFN-Î ³ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. Journal of Experimental Medicine, 2016, 213, 733-750.	8.5	182
49	Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression. Science Translational Medicine, 2016, 8, 356ra119.	12.4	82
50	The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans. Clinical Immunology, 2016, 173, 171-180.	3.2	41
51	Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nature Communications, 2016, 7, 12614.	12.8	58
52	Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. Journal of Autoimmunity, 2016, 71, 44-50.	6.5	18
53	The Role of <i>PTPN22</i> Risk Variant in the Development of Autoimmunity: Finding Common Ground between Mouse and Human. Journal of Immunology, 2015, 194, 2977-2984.	0.8	66
54	Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 2015, 7, 315ra189.	12.4	767

#	Article	IF	CITATIONS
55	Cutting Edge: Genetic Variation in <i>TLR1</i> Is Associated with Pam3CSK4-Induced Effector T Cell Resistance to Regulatory T Cell Suppression. Journal of Immunology, 2014, 193, 5786-5790.	0.8	9
56	Citrulline‧pecific Th1 Cells Are Increased in Rheumatoid Arthritis and Their Frequency Is Influenced by Disease Duration and Therapy. Arthritis and Rheumatology, 2014, 66, 1712-1722.	5.6	168
57	Performance of Anti–Cyclic Citrullinated Peptide Assays Differs in Subjects at Increased Risk of Rheumatoid Arthritis and Subjects With Established Disease. Arthritis and Rheumatism, 2013, 65, 2243-2252.	6.7	64
58	Relatives Without Rheumatoid Arthritis Show Reactivity to Anti–Citrullinated Protein/Peptide Antibodies That Are Associated With Arthritisâ€Related Traits: Studies of the Etiology of Rheumatoid Arthritis. Arthritis and Rheumatism, 2013, 65, 1995-2004.	6.7	44
59	Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Annals of the Rheumatic Diseases, 2013, 72, 901-907.	0.9	115
60	A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. Journal of Clinical Investigation, 2013, 123, 2024-2036.	8.2	162
61	Multiple Autoimmune-Associated Variants Confer Decreased IL-2R Signaling in CD4+CD25hi T Cells of Type 1 Diabetic and Multiple Sclerosis Patients. PLoS ONE, 2013, 8, e83811.	2.5	91
62	Altered B Cell Homeostasis Is Associated with Type I Diabetes and Carriers of the PTPN22 Allelic Variant. Journal of Immunology, 2012, 188, 487-496.	0.8	114
63	The Relapsing Polychondritis Disease Activity Index: Development of a disease activity score for relapsing polychondritis. Autoimmunity Reviews, 2012, 12, 204-209.	5.8	71
64	Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay. Methods in Molecular Biology, 2011, 707, 233-241.	0.9	16
65	Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis and Rheumatism, 2011, 63, 2873-2883.	6.7	128
66	CD4+FOXP3+ T Regulatory Cells in Human Autoimmunity: More Than a Numbers Game. Journal of Immunology, 2011, 187, 2061-2066.	0.8	250
67	Low-Dose Antigen Promotes Induction of FOXP3 in Human CD4+ T Cells. Journal of Immunology, 2011, 187, 3511-3520.	0.8	34
68	The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. Journal of Clinical Investigation, 2011, 121, 3635-3644.	8.2	259
69	Complement receptor 2/CD21â^' human naive B cells contain mostly autoreactive unresponsive clones. Blood, 2010, 115, 5026-5036.	1.4	399
70	HLA–DR1001 presents "alteredâ€self―peptides derived from jointâ€associated proteins by accepting citrulline in three of its binding pockets. Arthritis and Rheumatism, 2010, 62, 2909-2918.	6.7	86
71	Defects in IL-2R Signaling Contribute to Diminished Maintenance of FOXP3 Expression in CD4+CD25+ Regulatory T-Cells of Type 1 Diabetic Subjects. Diabetes, 2010, 59, 407-415.	0.6	242
72	Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. Journal of Leukocyte Biology, 2009, 86, 567-572.	3.3	131

#	Article	IF	CITATIONS
73	Functional isletâ€specific Treg can be generated from CD4 ⁺ CD25 ^{â^'} T cells of healthy and type 1 diabetic subjects. European Journal of Immunology, 2009, 39, 612-620.	2.9	44
74	A prospective approach to investigating the natural history of preclinical rheumatoid arthritis (RA) using firstâ€degree relatives of probands with RA. Arthritis and Rheumatism, 2009, 61, 1735-1742.	6.7	129
75	FOXP3 and the regulation of Treg/Th17 differentiation. Microbes and Infection, 2009, 11, 594-598.	1.9	143
76	Functional Analysis of FOXP3. Annals of the New York Academy of Sciences, 2008, 1143, 151-169.	3.8	43
77	Combination of rapamycin and IL-2 increases de novo induction of human CD4+CD25+FOXP3+ T cells. Journal of Autoimmunity, 2008, 30, 293-302.	6.5	63
78	The Effector T Cells of Diabetic Subjects Are Resistant to Regulation via CD4+FOXP3+ Regulatory T Cells. Journal of Immunology, 2008, 181, 7350-7355.	0.8	265
79	Genetic Variation in PTPN22 Corresponds to Altered Function of T and B Lymphocytes. Journal of Immunology, 2007, 179, 4704-4710.	0.8	295
80	Influence of FOXP3 on CD4+CD25+regulatory T cells. Expert Review of Clinical Immunology, 2006, 2, 639-647.	3.0	8
81	<i>>De novo</i> generation of antigen-specific CD4 ⁺ CD25 ⁺ regulatory T cells from human CD4 ⁺ CD25 [–] cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4103-4108.	7.1	266
82	Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells. Journal of Clinical Investigation, 2003, 112, 1437-1443.	8.2	1,056
83	Identification of type II collagen peptide 261-273-specific T cell clones in a patient with relapsing polychondritis. Arthritis and Rheumatism, 2002, 46, 238-244.	6.7	84
84	T Cell Selection and Differential Activation on Structurally Related HLA-DR4 Ligands. Journal of Immunology, 2001, 167, 3250-3256.	0.8	20
85	Recognition of altered self major histocompatibility complex molecules modulated by specific peptide interactions. European Journal of Immunology, 1996, 26, 949-952.	2.9	15
86	IL-6-Driven pSTAT1 Response Is Linked to T Cell Features Implicated in Early Immune Dysregulation. Frontiers in Immunology, 0, 13, .	4.8	0