Diego Correa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6704356/publications.pdf

Version: 2024-02-01

48 papers 3,869 citations

236925 25 h-index 254184 43 g-index

51 all docs

51 docs citations

51 times ranked 6049 citing authors

#	Article	IF	CITATIONS
1	Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy, 2022, 24, 124-136.	0.7	5
2	Human-derived osteoblast-like cells and pericyte-like cells induce distinct metastatic phenotypes in primary breast cancer cells. Experimental Biology and Medicine, 2021, 246, 971-985.	2.4	5
3	Infrapatellar fat pad-derived mesenchymal stem cell-based spheroids enhance their therapeutic efficacy to reverse synovitis and fat pad fibrosis. Stem Cell Research and Therapy, 2021, 12, 44.	5.5	10
4	Increased Mesenchymal Stem Cell Functionalization in Three-Dimensional Manufacturing Settings for Enhanced Therapeutic Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 621748.	4.1	69
5	Treatment of Chronic Diabetic Foot Ulcers with Adipose-Derived Stromal Vascular Fraction Cell Injections: Safety and Evidence of Efficacy at 1ÂYear. Stem Cells Translational Medicine, 2021, 10, 1138-1147.	3.3	32
6	Editorial: Advanced Cell Culture Technologies to Boost Cell-Based Therapies. Frontiers in Bioengineering and Biotechnology, 2021, 9, 727298.	4.1	0
7	Human Tendon Stem/Progenitor Cell Features and Functionality Are Highly Influenced by in vitro Culture Conditions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 711964.	4.1	4
8	Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase $1/2a$, randomized controlled trial. Stem Cells Translational Medicine, 2021, 10, 660-673.	3.3	281
9	Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy. Bioengineering, 2021, 8, 166.	3.5	7
10	Carta al editor. Tributo a MarÃa Helena Henao y Jaime Moreno: a la memoria de MarÃa Helena Henao. Caruquia. Revista FilosofÃa UIS, 2021, 21, .	0.1	0
11	Regulatory-compliant conditions during cell product manufacturing enhance in vitro immunomodulatory properties of infrapatellar fat pad-derived mesenchymal stem/stromal cells. Cytotherapy, 2020, 22, 677-689.	0.7	10
12	Sustained clinical improvement of Parkinson's disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. Journal of Clinical Neuroscience, 2020, 81, 47-51.	1.5	11
13	Infrapatellar Fat Pad/Synovium Complex in Early-Stage Knee Osteoarthritis: Potential New Target and Source of Therapeutic Mesenchymal Stem/Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 860.	4.1	49
14	Adipose-derived stromal vascular fraction (SVF) cells for the treatment of non-reconstructable peripheral vascular disease in patients with critical limb ischemia: A 6-year follow-up showing durable effects. Stem Cell Research, 2020, 49, 102071.	0.7	12
15	CD10/Neprilysin Enrichment in Infrapatellar Fat Pad–Derived Mesenchymal Stem Cells Under Regulatory-Compliant Conditions: Implications for Efficient Synovitis and Fat Pad Fibrosis Reversal. American Journal of Sports Medicine, 2020, 48, 2013-2027.	4.2	24
16	Signature quality attributes of CD146+ mesenchymal stem/stromal cells correlate with high therapeutic and secretory potency. Stem Cells, 2020, 38, 1034-1049.	3.2	54
17	Modulation of Adipose-Derived Mesenchymal Stem/Stromal Cell Transcriptome by G-CSF Stimulation. Stem Cells International, 2020, 2020, 1-9.	2.5	5
18	Intralesional Injection of Bone Marrow Aspirate Concentrate for the Treatment of Osteonecrosis of the Knee Secondary to Systemic Lupus Erythematosus: A Case Report. Frontiers in Bioengineering and Biotechnology, 2020, 8, 202.	4.1	10

#	Article	IF	CITATIONS
19	Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated Substance P degradation. Scientific Reports, 2019, 9, 10864.	3.3	39
20	Evaluating Vascularization of Heterotopic Islet Constructs for Type 1 Diabetes Using an In Vitro Platform. Integrative Biology (United Kingdom), 2019, 11, 331-341.	1.3	5
21	Reliable Reference Genes for Gene Expression Assessment in Tendon-Derived Cells under Inflammatory and Pro-Fibrotic/Healing Stimuli. Cells, 2019, 8, 1188.	4.1	9
22	Human Diseased Articular Cartilage Contains a Mesenchymal Stem Cell-Like Population of Chondroprogenitors with Strong Immunomodulatory Responses. Journal of Clinical Medicine, 2019, 8, 423.	2.4	42
23	Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy, 2019, 21, 1179-1197.	0.7	54
24	Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. Tissue Engineering - Part B: Reviews, 2019, 25, 55-77.	4.8	71
25	Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage. Tissue Engineering - Part A, 2018, 24, 335-350.	3.1	27
26	Nondestructive/Noninvasive Imaging Evaluation of Cellular Differentiation Progression During <i>In Vitro</i> Mesenchymal Stem Cell-Derived Chondrogenesis. Tissue Engineering - Part A, 2018, 24, 662-671.	3.1	19
27	Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Frontiers in Bioengineering and Biotechnology, 2018, 6, 105.	4.1	241
28	Non-reconstructable peripheral vascular disease of the lower extremity in ten patients treated with adipose-derived stromal vascular fraction cells. Stem Cell Research, 2017, 18, 14-21.	0.7	49
29	Articular cartilage repair: Current needs, methods and research directions. Seminars in Cell and Developmental Biology, 2017, 62, 67-77.	5.0	126
30	Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. International Journal of Cancer, 2016, 138, 417-427.	5.1	59
31	Mesenchymal Stem Cells During Tumor Formation and Dissemination. Current Stem Cell Reports, 2016, 2, 174-182.	1.6	2
32	FTIR imaging analysis of bioactive microsphere incorporated stem cell sheets for osteochondral defect repair., 2014,,.		0
33	Serial Transplantation and Long-term Engraftment of Intra-arterially Delivered Clonally Derived Mesenchymal Stem Cells to Injured Bone Marrow. Molecular Therapy, 2014, 22, 160-168.	8.2	54
34	Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations. Tissue Engineering - Part B: Reviews, 2014, 20, 596-608.	4.8	269
35	Coordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages. Journal of Experimental Medicine, 2013, 210, 969-985.	8.5	40
36	Efficient Lentiviral Transduction of Human Mesenchymal Stem Cells That Preserves Proliferation and Differentiation Capabilities. Stem Cells Translational Medicine, 2012, 1, 886-897.	3.3	66

#	Article	IF	CITATIONS
37	Neurovascular Proximity in the Diaphragm Muscle of Adult Mice. Microcirculation, 2012, 19, 306-315.	1.8	7
38	The MSC: An Injury Drugstore. Cell Stem Cell, 2011, 9, 11-15.	11.1	1,412
39	Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction. PLoS ONE, 2011, 6, e23891.	2.5	47
40	PDGF in bone formation and regeneration: New insights into a novel mechanism involving MSCs. Journal of Orthopaedic Research, 2011, 29, 1795-1803.	2.3	255
41	Deletion of Zfp521 rescues the growth plate phenotype in a mouse model of Jansen metaphyseal chondrodysplasia. FASEB Journal, 2011, 25, 3057-3067.	0.5	26
42	Zinc finger protein 521, a new player in bone formation. Annals of the New York Academy of Sciences, 2010, 1192, 32-37.	3.8	34
43	Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. Journal of Cell Biology, 2010, 191, 1271-1283.	5.2	97
44	Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone, 2010, 46, 1457-1463.	2.9	51
45	Zfp521 Is a Target Gene and Key Effector of Parathyroid Hormone-Related Peptide Signaling in Growth Plate Chondrocytes. Developmental Cell, 2010, 19, 533-546.	7.0	94
46	Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone, 2009, 44, 528-536.	2.9	85
47	Neurovascular alignment in mouse diaphragm muscle. FASEB Journal, 2007, 21, A482.	0.5	0
48	INFLUENCE OF PRE-CONDITIONING LOADS ON BOVINE ARTICULAR CARTILAGE STRESS RELAXATION BEHAVIOR IN CONFINED COMPRESSION. Journal of Musculoskeletal Research, 2003, 07, 145-150.	0.2	0