Job de Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6703623/publications.pdf

Version: 2024-02-01

		933447	1199594	
12	535	10	12	
papers	citations	h-index	g-index	
1.2	12	1.2	1146	
13	13	13	1146	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	Biallelic <i>BUB1</i> mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. Science Advances, 2022, 8, eabk0114.	10.3	11
2	Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia. Journal of Cellular Physiology, 2021, 236, 5664-5675.	4.1	1
3	ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation. Nature Cell Biology, 2021, 23, 595-607.	10.3	38
4	The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells, 2021, 10, 3455.	4.1	14
5	Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nature Communications, 2020, 11, 4287.	12.8	33
6	WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Developmental Cell, 2020, 52, 683-698.e7.	7.0	36
7	Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS ONE, 2020, 15, e0220348.	2.5	15
8	Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nature Communications, 2015, 6, 8399.	12.8	46
9	Functional analysis of two inhibitor of apoptosis (iap) orthologs from Helicoverpa armigera nucleopolyhedrovirus. Virus Research, 2012, 165, 107-111.	2.2	17
10	MDM4 is a key therapeutic target in cutaneous melanoma. Nature Medicine, 2012, 18, 1239-1247.	30.7	266
11	Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts. Molecular Cancer, 2011, 10, 111.	19.2	13
12	HDMX-L Is Expressed from a Functional p53-responsive Promoter in the First Intron of the HDMX Gene and Participates in an Autoregulatory Feedback Loop to Control p53 Activity. Journal of Biological Chemistry, 2010, 285, 29111-29127.	3.4	45