Ermenegilda Parrilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6703465/publications.pdf

Version: 2024-02-01

117 papers 3,613 citations

147801 31 h-index 54 g-index

123 all docs

123 docs citations

123 times ranked $\begin{array}{c} 3632 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5.5	367
2	Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial Cell Factories, 2008, $7,11.$	4.0	269
3	Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Marine Drugs, 2018, 16, 69.	4.6	156
4	Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnology Advances, 2013, 31, 140-153.	11.7	116
5	Ammonium hydroxide hydrolysis. Journal of Lipid Research, 2002, 43, 2188-2195.	4.2	88
6	The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles, 2008, 12, 311-323.	2.3	85
7	Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: A strategy for cryoprotection. Carbohydrate Polymers, 2017, 156, 364-371.	10.2	83
8	A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles, 2001, 5, 257-264.	2.3	81
9	A Unique Capsular Polysaccharide Structure from the Psychrophilic Marine Bacterium <i>Colwellia psychrerythraea</i> 34H That Mimics Antifreeze (Glyco)proteins. Journal of the American Chemical Society, 2015, 137, 179-189.	13.7	78
10	Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Scientific Reports, 2017, 7, 839.	3.3	65
11	Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnology, 2013, 30, 824-838.	4.4	62
12	Influence of Growth Temperature on Lipid and Phosphate Contents of Surface Polysaccharides from the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Bacteriology, 2004, 186, 29-34.	2.2	59
13	Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source. Microbial Cell Factories, 2015, 14, 106.	4.0	59
14	Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update. Marine Drugs, 2007, 5, 85-112.	4.6	58
15	Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Research in Microbiology, 2013, 164, 450-456.	2.1	58
16	Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa. Frontiers in Microbiology, 2015, 6, 1333.	3 . 5	53
17	Genomeâ€scale metabolic reconstruction and constraintâ€based modelling of the Antarctic bacterium <scp><i>P< i>< scp><i>sep>125. Environmental Microbiology, 2015, 17, 751-766.</i></i></scp>	3.8	53
18	The art of adapting to extreme environments: The model system Pseudoalteromonas. Physics of Life Reviews, 2021, 36, 137-161.	2.8	53

#	Article	IF	Citations
19	Identification of novel splice variants of the human catalytic subunit \hat{cl}^2 of cAMP-dependent protein kinase. FEBS Journal, 2001, 268, 5066-5073.	0.2	49
20	Lipid A structure of Pseudoalteromonas haloplanktis TAC 125: use of electrospray ionization tandem mass spectrometry for the determination of fatty acid distribution. Journal of Mass Spectrometry, 2002, 37, 481-488.	1.6	47
21	Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnology Progress, 2011, 27, 38-46.	2.6	46
22	The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics, 2017, 18, 93.	2.8	46
23	Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Frontiers in Cellular and Infection Microbiology, 2017, 7, 46.	3.9	46
24	Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Scientific Reports, 2018, 8, 1190.	3.3	41
25	Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microbial Cell Factories, 2008, 7, 2.	4.0	40
26	A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate. Analytica Chimica Acta, 2017, 958, 59-70.	5.4	40
27	Secretion of α-Amylase from Pseudoalteromonas haloplanktis TAB23: Two Different Pathways in Different Hosts. Journal of Bacteriology, 2002, 184, 5814-5817.	2.2	36
28	Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioengineered Bugs, 2010, $1,213-216$.	1.7	34
29	The role of a 2-on-2 haemoglobin in oxidative and nitrosative stress resistance of Antarctic Pseudoalteromonas haloplanktis TAC125. Biochimie, 2010, 92, 1003-1009.	2.6	33
30	Structural Investigation and Biological Activity of the Lipooligosaccharide from the Psychrophilic Bacterium <i>Pseudoalteromonas haloplanktis</i> TAB 23. Chemistry - A European Journal, 2011, 17, 7053-7060.	3.3	33
31	A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microbial Cell Factories, 2006, 5, 40.	4.0	32
32	Highly Phosphorylated Core Oligosaccaride Structures from Coldâ€Adapted <i>Psychromonas arctica</i> . Chemistry - A European Journal, 2008, 14, 9368-9376.	3.3	32
33	Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. FEBS Journal, 2001, 268, 5092-5097.	0.2	31
34	A Second Galacturonic Acid Transferase Is Required for Core Lipopolysaccharide Biosynthesis and Complete Capsule Association with the Cell Surface in Klebsiella pneumoniae. Journal of Bacteriology, 2007, 189, 1128-1137.	2.2	31
35	Hydrophobin coating prevents <i>Staphylococcus epidermidis</i> biofilm formation on different surfaces. Biofouling, 2017, 33, 601-611.	2.2	31
36	The hormone-sensitive lipase from Psychrobacter sp. TA144: New insight in the structural/functional characterization. Biochimie, 2010, 92, 949-957.	2.6	29

#	Article	IF	Citations
37	A novel synthetic medium and expression system for subzero growth and recombinant protein production in Pseudoalteromonas haloplanktis TAC125. Applied Microbiology and Biotechnology, 2017, 101, 725-734.	3.6	29
38	Anti-biofilm activity of <i>pseudoalteromonas haloplanktis</i> tac125 against <i>staphylococcus epidermidis</i> biofilm: Evidence of a signal molecule involvement?. International Journal of Immunopathology and Pharmacology, 2015, 28, 104-113.	2.1	28
39	The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Gene, 2007, 398, 69-77.	2.2	27
40	<p>Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages</p> . International Journal of Nanomedicine, 2019, Volume 14, 2219-2232.	6.7	27
41	Process optimization for recombinant protein production in the psychrophilic bacterium Pseudoalteromonas haloplanktis. Process Biochemistry, 2011, 46, 953-959.	3.7	26
42	Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie Van Leeuwenhoek, 2017, 110, 1377-1387.	1.7	26
43	Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1. Carbohydrate Research, 2014, 388, 73-80.	2.3	25
44	Environmental conditions shape the biofilm of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Microbiological Research, 2019, 218, 66-75.	5.3	25
45	Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection. Frontiers in Microbiology, 2020, 11, 732.	3.5	25
46	Physicochemical Approach to Understanding the Structure, Conformation, and Activity of Mannan Polysaccharides. Biomacromolecules, 2021, 22, 1445-1457.	5.4	25
47	Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp FEBS Journal, 1999, 264, 554-561.	0.2	24
48	The complete structure of the core of the LPS from Plesiomonas shigelloides 302–73 and the identification of its O-antigen biological repeating unit. Carbohydrate Research, 2010, 345, 2523-2528.	2.3	24
49	Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains. New Biotechnology, 2017, 35, 13-18.	4.4	23
50	Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles, 2014, 18, 35-49.	2.3	22
51	Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Applied Microbiology and Biotechnology, 2015, 99, 5863-5874.	3.6	22
52	WMR Peptide as Antifungal and Antibiofilm against Albicans and Non-Albicans Candida Species: Shreds of Evidence on the Mechanism of Action. International Journal of Molecular Sciences, 2022, 23, 2151.	4.1	22
53	The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate Research, 2004, 339, 1985-1993.	2.3	21
54	Complete Lipooligosaccharide Structure of the Clinical Isolate <i>Acinetobacter baumannii</i> , Strain SMAL. European Journal of Organic Chemistry, 2010, 2010, 1345-1352.	2.4	21

#	Article	IF	CITATIONS
55	Unusual Lipidâ€A from a Coldâ€Adapted Bacterium: Detailed Structural Characterization. ChemBioChem, 2017, 18, 1845-1854.	2.6	21
56	Secretion of psychrophilic α-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125. FEMS Microbiology Letters, 2006, 258, 67-71.	1.8	20
57	Structural Investigation of the Oligosaccharide Portion Isolated from the Lipooligosaccharide of the Permafrost Psychrophile Psychrobacter arcticus 273-4. Marine Drugs, 2015, 13, 4539-4555.	4.6	20
58	Structure of the Core Region from the Lipopolysaccharide of <i>Plesiomonas shigelloides</i> Strain 302â€₹3 (Serotype O1). European Journal of Organic Chemistry, 2009, 2009, 1365-1371.	2.4	19
59	Pentadecanal inspired molecules as new anti-biofilm agents against <i>Staphylococcus epidermidis</i> . Biofouling, 2018, 34, 1110-1120.	2,2	19
60	An Innovative Approach to Control H. pylori-Induced Persistent Inflammation and Colonization. Microorganisms, 2020, 8, 1214.	3.6	19
61	Structural Determination of the O-Chain Polysaccharide from the Lipopolysaccharide of the HaloalkaliphilicHalomonas pantelleriensis Bacterium. European Journal of Organic Chemistry, 2006, 2006, 1801-1808.	2.4	18
62	An In Vitro Model to Investigate the Role of Helicobacter pylori in Type 2 Diabetes, Obesity, Alzheimer's Disease and Cardiometabolic Disease. International Journal of Molecular Sciences, 2020, 21, 8369.	4.1	17
63	Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: towards the development of an anti-biofilm coating to prevent polymicrobial infections. Research in Microbiology, 2021, 172, 103880.	2.1	17
64	Engineered marine Antarctic bacterium < i>Pseudoalteromonas haloplanktis < / i>TAC125: a promising micro-organism for the bioremediation of aromatic compounds. Journal of Applied Microbiology, 2009, 106, 49-56.	3.1	16
65	Structural Characterization of the Core Oligosaccharide Isolated from the LipoÂpolysaccharide of the Psychrophilic Bacterium <i>Colwellia psychrerythraea</i> Chemistry, 2013, 2013, 3771-3779.	2.4	16
66	Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microbial Cell Factories, 2018, 17, 126.	4.0	16
67	Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microbial Cell Factories, 2010, 9, 19.	4.0	15
68	A Novel Strategy for the Construction of Genomic Mutants of the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. Methods in Molecular Biology, 2012, 824, 219-233.	0.9	15
69	Cold-adapted bacterial extracts as a source of anti-infective and antimicrobial compounds against <i>Staphylococcus aureus</i> . Future Microbiology, 2019, 14, 1369-1382.	2.0	15
70	Lactoferrin, Quercetin, and Hydroxyapatite Act Synergistically against Pseudomonas fluorescens. International Journal of Molecular Sciences, 2021, 22, 9247.	4.1	15
71	Structural Characterization of the Core Region of the Lipopolysaccharide from the HaloalkaliphilicHalomonas pantelleriensis: Identification of the Biological O-Antigen Repeating Unit. European Journal of Organic Chemistry, 2008, 2008, 721-728.	2.4	14
72	Regulated Recombinant Protein Production in the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. Methods in Molecular Biology, 2012, 824, 203-218.	0.9	14

#	Article	IF	CITATIONS
73	Recombinant production of a single-chain antibody fragment in Pseudoalteromonas haloplanktis TAC125. Applied Microbiology and Biotechnology, 2014, 98, 4887-4895.	3.6	14
74	New insights on Pseudoalteromonas haloplanktis TAC125 genome organization and benchmarks of genome assembly applications using next and third generation sequencing technologies. Scientific Reports, 2019, 9, 16444.	3.3	14
75	The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydrate Research, 2005, 340, 1475-1482.	2.3	13
76	Draft Genome Sequence of the Volatile Organic Compound-Producing Antarctic Bacterium Arthrobacter sp. Strain TB23, Able To Inhibit Cystic Fibrosis Pathogens Belonging to the Burkholderia cepacia Complex. Journal of Bacteriology, 2012, 194, 6334-6335.	2.2	13
77	Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia, 2015, 761, 85-95.	2.0	13
78	PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization. Polar Science, 2010, 4, 285-294.	1.2	12
79	Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins. Biochimie, 2012, 94, 953-960.	2.6	12
80	Characterization of the Core Oligosaccharide and the Oâ€Antigen Biological Repeating Unit from <i>Halomonas stevensii</i> Lipopolysaccharide: The First Case of Oâ€Antigen Linked to the Inner Core. Chemistry - A European Journal, 2012, 18, 3729-3735.	3.3	12
81	A Semisynthetic Approach to New Immunoadjuvant Candidates: Siteâ€6elective Chemical Manipulation of <i>Escherichia coli</i> Monophosphoryl Lipidâ€A. Chemistry - A European Journal, 2016, 22, 11053-11063.	3.3	12
82	Bacteriophages Promote Metabolic Changes in Bacteria Biofilm. Microorganisms, 2020, 8, 480.	3.6	12
83	Thermal stabilization of psychrophilic enzymes: A case study of the coldâ€active hormoneâ€sensitive lipase from <i>Psychrobacter</i> sp. TA144. Biotechnology Progress, 2012, 28, 946-952.	2.6	11
84	The Union Is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm. Microorganisms, 2021, 9, 60.	3.6	11
85	Structural determination of the O-deacetylated O-chain of lipopolysaccharide from Burkholderia (Pseudomonas) cepacia strain PVFi-5A. Carbohydrate Research, 1998, 307, 333-341.	2.3	10
86	Antibiofilm Activity of a Trichoderma Metabolite against Xanthomonas campestris pv. campestris, Alone and in Association with a Phage. Microorganisms, 2020, 8, 620.	3.6	10
87	General Secretory Pathway from marine Antarctic Pseudoalteromonas haloplanktis TAC125. Marine Genomics, 2008, 1, 123-128.	1.1	9
88	Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery. Extremophiles, 2016, 20, 227-234.	2.3	9
89	Improvement of Pseudoalteromonas haloplanktis TAC125 as a Cell Factory: IPTG-Inducible Plasmid Construction and Strain Engineering. Microorganisms, 2020, 8, 1466.	3.6	9
90	Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125. Methods in Molecular Biology, 2015, 1258, 243-257.	0.9	9

#	Article	IF	CITATIONS
91	Life in icy habitats: new insights supporting panspermia theory. Rendiconti Lincei, 2011, 22, 375-383.	2.2	8
92	The Lipid A from the Haloalkaliphilic Bacterium Salinivibrio sharmensis Strain BAGT. Marine Drugs, 2013, 11, 184-193.	4.6	8
93	A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Applied Microbiology and Biotechnology, 2014, 98, 7781-7791.	3.6	8
94	Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiology, 2018, 18, 208.	3.3	8
95	PssA is required for \hat{l}_{\pm} -amylase secretion in Antarctic Pseudoalteromonas haloplanktis. Microbiology (United Kingdom), 2010, 156, 211-219.	1.8	7
96	The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiology Ecology, 2019, 95, .	2.7	7
97	Cnf1 Variants Endowed with the Ability to Cross the Blood–Brain Barrier: A New Potential Therapeutic Strategy for Glioblastoma. Toxins, 2020, 12, 291.	3.4	6
98	Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of <i>Staphylococcus epidermidis</i> on PDMS. Pathogens and Disease, 2020, 78, .	2.0	6
99	Anti-Virulence Activity of the Cell-Free Supernatant of the Antarctic Bacterium Psychrobacter sp. TAE2020 against Pseudomonas aeruginosa Clinical Isolates from Cystic Fibrosis Patients. Antibiotics, 2021, 10, 944.	3.7	6
100	Structural characterization of the core oligosaccharide isolated from the lipopolysaccharide of the haloalkaliphilic bacterium Salinivibrio sharmensis strain BAGT. Carbohydrate Research, 2013, 368, 61-67.	2.3	5
101	Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis. Extremophiles, 2016, 20, 687-694.	2.3	5
102	High yield purification and first structural characterization of the fullâ€length bacterial toxin CNF1. Biotechnology Progress, 2018, 34, 150-159.	2.6	5
103	Cell-wall associated polysaccharide from the psychrotolerant bacterium Psychrobacter arcticus 273-4: isolation, purification and structural elucidation. Extremophiles, 2020, 24, 63-70.	2.3	5
104	Modelling hCDKL5 Heterologous Expression in Bacteria. Metabolites, 2021, 11, 491.	2.9	5
105	Title is missing!. Microbial Cell Factories, 2006, 5, P36.	4.0	4
106	Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model. PLoS ONE, 2015, 10, e0142883.	2.5	4
107	Heterologous Protein Expression in Pseudoalteromonas haloplanktis TAC125., 2017, , 513-525.		4
108	Soluble Recombinant Protein Production in Pseudoalteromonas haloplanktis TAC125: The Case Study of the Full-Length Human CDKL5 Protein. Methods in Molecular Biology, 2022, 2406, 219-232.	0.9	4

#	Article	IF	CITATIONS
109	The Presence of OMP Inclusion Bodies in a Escherichia coli K-12 Mutated Strain is not Related to Lipopolysaccharide Structure. Journal of Biochemistry, 2009, 146, 231-240.	1.7	3
110	Whole-genome sequencing of Pseudomonas sp. TAE6080, a strain capable of inhibiting Staphylococcus epidermidis biofilm. Marine Genomics, 2021, 60, 100887.	1.1	3
111	Molecular Structure of Lipopolysaccharides of Cold-Adapted Bacteria., 2017,, 285-303.		3
112	Lipid A structural characterization from the LPS of the Siberian psychro-tolerant Psychrobacter arcticus 273-4 grown at low temperature. Extremophiles, 2018, 22, 955-963.	2.3	2
113	Conditional gene silencing in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Research in Microbiology, 2022, 173, 103939.	2.1	2
114	Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors. International Journal of Molecular Sciences, 2021, 22, 13154.	4.1	2
115	Bacteriophage-Resistant Salmonella rissen: An In Vitro Mitigated Inflammatory Response. Viruses, 2021, 13, 2468.	3.3	2
116	Cold-Adapted Esterases and Lipases: A Biodiversity Still Under-Exploited. Current Chemical Biology, 2010, 4, 74-83.	0.5	1
117	Membrane and Extracellular Matrix Glycopolymers of Colwellia psychrerythraea 34H: Structural Changes at Different Growth Temperatures. Frontiers in Microbiology, 2022, 13, 820714.	3.5	1