Nicholas Lubbers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6703216/publications.pdf

Version: 2024-02-01

26 papers 2,017 citations

430874 18 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

1795 citing authors

#	Article	IF	Citations
1	Machine learning of consistent thermodynamic models using automatic differentiation. Physical Review E, 2022, 105, 045301.	2.1	7
2	Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
3	Bond order predictions using deep neural networks. Journal of Applied Physics, 2021, 129, .	2.5	8
4	Automated discovery of a robust interatomic potential for aluminum. Nature Communications, 2021, 12, 1257.	12.8	47
5	A multi-dimensional parametric study of variability in multi-phase flow dynamics during geologic CO2 sequestration accelerated with machine learning. Applied Energy, 2021, 287, 116580.	10.1	21
6	Computationally Efficient Multiscale Neural Networks Applied to Fluid Flow in Complex 3D Porous Media. Transport in Porous Media, 2021, 140, 241-272.	2.6	45
7	Machine learned Hückel theory: Interfacing physics and deep neural networks. Journal of Chemical Physics, 2021, 154, 244108.	3.0	25
8	The Rise of Neural Networks for Materials and Chemical Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 6227-6243.	4.6	39
9	Pairwise Difference Regression: A Machine Learning Meta-algorithm for Improved Prediction and Uncertainty Quantification in Chemical Search. Journal of Chemical Information and Modeling, 2021, 61, 3846-3857.	5.4	17
10	A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media. Journal of Computational Physics, 2021, 443, 110526.	3.8	21
11	Predicting phosphorescence energies and inferring wavefunction localization with machine learning. Chemical Science, 2021, 12, 10207-10217.	7.4	14
12	Modeling Nanoconfinement Effects Using Active Learning. Journal of Physical Chemistry C, 2020, 124, 22200-22211.	3.1	24
13	Evaluating diffusion and the thermodynamic factor for binary ionic mixtures. Physics of Plasmas, 2020, 27, .	1.9	10
14	Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid. Journal of Chemical Physics, 2020, 153, 104502.	3.0	22
15	The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules. Scientific Data, 2020, 7, 134.	5.3	104
16	<i>Ex Machina</i> Determination of Structural Correlation Functions. Journal of Physical Chemistry Letters, 2020, 11 , 4372-4378.	4.6	7
17	Graphics Processing Unit-Accelerated Semiempirical Born Oppenheimer Molecular Dynamics Using PyTorch. Journal of Chemical Theory and Computation, 2020, 16, 4951-4962.	5.3	24
18	Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nature Communications, 2019, 10, 2903.	12.8	399

#	Article	IF	CITATION
19	Machine learning for molecular dynamics with strongly correlated electrons. Physical Review B, 2019, 99, .	3.2	20
20	Hierarchical modeling of molecular energies using a deep neural network. Journal of Chemical Physics, 2018, 148, 241715.	3.0	221
21	Earthquake Catalogâ€Based Machine Learning Identification of Laboratory Fault States and the Effects of Magnitude of Completeness. Geophysical Research Letters, 2018, 45, 13,269.	4.0	39
22	Less is more: Sampling chemical space with active learning. Journal of Chemical Physics, 2018, 148, 241733.	3.0	426
23	Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks. Journal of Chemical Theory and Computation, 2018, 14, 4687-4698.	5. 3	81
24	Discovering a Transferable Charge Assignment Model Using Machine Learning. Journal of Physical Chemistry Letters, 2018, 9, 4495-4501.	4.6	88
25	Machine Learning Predicts Laboratory Earthquakes. Geophysical Research Letters, 2017, 44, 9276-9282.	4.0	272
26	On generalized harmonic number sums. Applied Mathematics and Computation, 2010, 217, 689-698.	2.2	17