Daniela Sia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6702553/publications.pdf

Version: 2024-02-01

109321 144013 8,599 56 35 57 citations h-index g-index papers 61 61 61 11400 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Molecular therapies and precision medicine for hepatocellular carcinoma. Nature Reviews Clinical Oncology, 2018, 15, 599-616.	27.6	1,308
2	Liver Cancer Cell of Origin, Molecular Class, and Effects onÂPatient Prognosis. Gastroenterology, 2017, 152, 745-761.	1.3	838
3	ldentification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology, 2017, 153, 812-826.	1.3	650
4	β-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1124-1141.	9.4	498
5	Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroenterology, 2013, 144, 829-840.	1.3	438
6	Combining Clinical, Pathology, and Gene Expression Data to Predict Recurrence of Hepatocellular Carcinoma. Gastroenterology, 2011, 140, 1501-1512.e2.	1.3	389
7	Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature, 2014, 513, 110-114.	27.8	367
8	Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncology, The, 2016, 17, 1386-1395.	10.7	357
9	Massive parallel sequencing uncovers actionable FGFR2–PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nature Communications, 2015, 6, 6087.	12.8	240
10	Intratumoral heterogeneity and clonal evolution in liver cancer. Nature Communications, 2020, 11, 291.	12.8	230
11	YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. Cell Reports, 2015, 10, 1692-1707.	6.4	213
12	Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut, 2017, 66, 1286-1296.	12.1	198
13	Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut, 2019, 68, 1065-1075.	12.1	195
14	Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2016, 22, 291-300.	7.0	185
15	Cancer gene discovery in hepatocellular carcinoma. Journal of Hepatology, 2010, 52, 921-929.	3.7	173
16	Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. Journal of Hepatology, 2020, 73, 315-327.	3.7	164
17	Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut, 2017, 66, 530-540.	12.1	161
18	Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell, 2021, 39, 866-882.e11.	16.8	159

#	Article	IF	CITATIONS
19	Immune Exclusion-Wnt/CTNNB1 Class Predicts Resistance to Immunotherapies in HCC. Clinical Cancer Research, 2019, 25, 2021-2023.	7.0	152
20	Gene-expression signature of vascular invasion in hepatocellular carcinoma. Journal of Hepatology, 2011, 55, 1325-1331.	3.7	133
21	Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. Journal of Hepatology, 2017, 67, 1222-1231.	3.7	121
22	Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity. Journal of Hepatology, 2017, 66, 952-961.	3.7	120
23	Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2021, 75, 865-878.	3.7	111
24	Immunomodulatory Effects of Lenvatinib Plus Anti–Programmed Cell Death Protein 1 in Mice and Rationale for Patient Enrichment in Hepatocellular Carcinoma. Hepatology, 2021, 74, 2652-2669.	7.3	95
25	Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut, 2023, 72, 129-140.	12.1	90
26	A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene, 2018, 37, 3740-3752.	5.9	89
27	Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. Journal of Hepatology, 2020, 73, 328-341.	3.7	82
28	Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene, 2021, 40, 140-151.	5.9	77
29	VEGF Signaling in Cancer Treatment. Current Pharmaceutical Design, 2014, 20, 2834-2842.	1.9	74
30	Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation. Journal of Hepatology, 2015, 63, 1368-1377.	3.7	64
31	Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. British Journal of Cancer, 2019, 121, 340-343.	6.4	62
32	An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents. Gastroenterology, 2019, 157, 1383-1397.e11.	1.3	62
33	Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with <i>EGFR</i> . Hepatology, 2013, 57, 120-130.	7.3	52
34	The future of patient-derived tumor xenografts in cancer treatment. Pharmacogenomics, 2015, 16, 1671-1683.	1.3	43
35	Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut, 2023, 72, 736-748.	12.1	42
36	Signaling Pathways in Hepatocellular Carcinoma. Oncology, 2011, 81, 18-23.	1.9	39

#	Article	IF	Citations
37	Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clinical Cancer Research, 2020, 26, 6350-6361.	7.0	35
38	Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood, 2010, 115, 2231-2240.	1.4	32
39	Cell of origin in biliary tract cancers and clinical implications. JHEP Reports, 2021, 3, 100226.	4.9	30
40	Translating 'â€"omics' results into precision medicine for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 571-572.	17.8	28
41	NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Gastroenterology, 2022, 163, 449-465.	1.3	23
42	IFN-γ Enhances the Antimyeloma Activity of the Fully Human Anti–Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3. Cancer Research, 2007, 67, 3269-3275.	0.9	18
43	Advances in cholangiocarcinoma research: report from the third Cholangiocarcinoma Foundation Annual Conference. Journal of Gastrointestinal Oncology, 2016, 7, 819-827.	1.4	17
44	Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma Journal of Clinical Oncology, 2021, 39, 4100-4100.	1.6	17
45	Transcriptomic characterization of cancer-testis antigens identifies MACEA3 as a driver of tumor progression in hepatocellular carcinoma. PLoS Genetics, 2021, 17, e1009589.	3.5	15
46	A computational approach to compare microvessel distributions in tumors following antiangiogenic treatments. Laboratory Investigation, 2009, 89, 1063-1070.	3.7	12
47	The portrait of liver cancer is shaped by mitochondrial genetics. Cell Reports, 2022, 38, 110254.	6.4	10
48	microRNAs: New ways to block tumor angiogenesis?. Journal of Hepatology, 2012, 57, 490-491.	3.7	9
49	Telomere loss in Philadelphia-negative hematopoiesis after successful treatment of chronic myeloid leukemia: Evidence for premature aging of the myeloid compartment. Mechanisms of Ageing and Development, 2012, 133, 479-488.	4.6	9
50	Translating cancer genomics for precision oncology in biliary tract cancers. Discovery Medicine, 2019, 28, 255-265.	0.5	6
51	Transcriptomic profiling of a multiethnic pediatric NAFLD cohort reveals genes and pathways associated with disease. Hepatology Communications, 2022, 6, 1598-1610.	4.3	6
52	microRNAs and the MYC Network: A Major Piece in the Puzzle of Liver Cancer. Gastroenterology, 2011, 140, 2138-2140.	1.3	5
53	Genetics of Hepatocellular Carcinoma: Risk Stratification, Clinical Outcome, and Implications for Therapy. Digestive Disease Interventions, 2017, 01, 055-065.	0.2	2
54	Novel insights into molecular and immune subtypes of biliary tract cancers. Advances in Cancer Research, 2022, , 167-199.	5.0	1

#	Article	IF	CITATIONS
55	Reply to: "Network-based discovery of gene signature for vascular invasion prediction in HCCâ€. Journal of Hepatology, 2012, 56, 1424-1425.	3.7	O
56	The Portrait of Liver Cancer is Shaped by Mitochondrial Genetics. SSRN Electronic Journal, 0, , .	0.4	0