Quentin J M Huys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6702034/publications.pdf Version: 2024-02-01

		71102	66911
98	7,234	41	78
papers	citations	h-index	g-index
111	111	111	(17)
111	111	111	6173
all docs	docs citations	times ranked	citing authors

OUENTIN I M HUVS

#	Article	IF	CITATIONS
1	From Computation to Clinic. Biological Psychiatry Global Open Science, 2023, 3, 319-328.	2.2	10
2	Alcohol Approach Bias Is Associated With Both Behavioral and Neural Pavlovian-to-Instrumental Transfer Effects in Alcohol-Dependent Patients. Biological Psychiatry Global Open Science, 2023, 3, 443-450.	2.2	5
3	A comparison of â€~pruning' during multi-step planning in depressed and healthy individuals. Psychological Medicine, 2022, 52, 3948-3956.	4.5	2
4	Humans perseverate on punishment avoidance goals in multigoal reinforcement learning. ELife, 2022, 11, .	6.0	7
5	A Computational View on the Nature of Reward and Value in Anhedonia. Current Topics in Behavioral Neurosciences, 2022, , 421-441.	1.7	6
6	Mortality Awareness: New Directions. Omega: Journal of Death and Dying, 2022, , 003022282211006.	1.0	0
7	Computational Psychiatry. , 2022, , 944-952.		Ο
8	Reward-Based Learning, Model-Based and Model-Free. , 2022, , 3042-3050.		0
9	Low predictive power of clinical features for relapse prediction after antidepressant discontinuation in a naturalistic setting. Scientific Reports, 2022, 12, .	3.3	2
10	Susceptibility to interference between Pavlovian and instrumental control is associated with early hazardous alcohol use. Addiction Biology, 2021, 26, e12983.	2.6	11
11	Advances in the computational understanding of mental illness. Neuropsychopharmacology, 2021, 46, 3-19.	5.4	70
12	Association of the <i>OPRM1</i> A118G polymorphism and Pavlovian-to-instrumental transfer: Clinical relevance for alcohol dependence. Journal of Psychopharmacology, 2021, 35, 566-578.	4.0	9
13	Neuro-cognitive processes as mediators of psychological treatment effects. Current Opinion in Behavioral Sciences, 2021, 38, 103-109.	3.9	10
14	How representative are neuroimaging samples? Large-scale evidence for trait anxiety differences between fMRI and behaviour-only research participants. Social Cognitive and Affective Neuroscience, 2021, 16, 1057-1070.	3.0	24
15	Model-Based and Model-Free Control Predicts Alcohol Consumption Developmental Trajectory in Young Adults: A 3-Year Prospective Study. Biological Psychiatry, 2021, 89, 980-989.	1.3	25
16	Explaining distortions in metacognition with an attractor network model of decision uncertainty. PLoS Computational Biology, 2021, 17, e1009201.	3.2	9
17	Stronger Prejudices Are Associated With Decreased Model-Based Control. Frontiers in Psychology, 2021, 12, 767022.	2.1	0
18	Dysfunctional approach behavior triggered by alcoholâ€unrelated Pavlovian cues predicts longâ€ŧerm relapse in alcohol dependence. Addiction Biology, 2020, 25, e12703.	2.6	23

#	Article	IF	CITATIONS
19	Dissociating neural learning signals in human sign- and goal-trackers. Nature Human Behaviour, 2020, 4, 201-214.	12.0	51
20	Computational Psychiatry Series. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 835-836.	1.5	1
21	The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse. Scientific Reports, 2020, 10, 22346.	3.3	14
22	Stimulation of the vagus nerve reduces learning in a go/no-go reinforcement learning task. European Neuropsychopharmacology, 2020, 35, 17-29.	0.7	21
23	Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biological Psychiatry, 2020, 88, e5-e10.	1.3	36
24	Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation. JAMA Psychiatry, 2020, 77, 513.	11.0	53
25	Canonical Correlation Analysis for Identifying Biotypes of Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 478-480.	1.5	6
26	Psychiatric Illnesses as Disorders of Network Dynamics. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 6, 865-876.	1.5	27
27	Opportunities for emotion and mental health research in the resource-rationality framework. Behavioral and Brain Sciences, 2020, 43, e21.	0.7	3
28	Personalized prediction of antidepressant v. placebo response: evidence from the EMBARC study. Psychological Medicine, 2019, 49, 1118-1127.	4.5	109
29	Pavlovian-To-Instrumental Transfer and Alcohol Consumption in Young Male Social Drinkers: Behavioral, Neural and Polygenic Correlates. Journal of Clinical Medicine, 2019, 8, 1188.	2.4	24
30	No substantial change in the balance between model-free and model-based control via training on the two-step task. PLoS Computational Biology, 2019, 15, e1007443.	3.2	9
31	The Importance of Standards for Sharing of Computational Models and Data. Computational Brain & Behavior, 2019, 2, 229-232.	1.7	9
32	Machine learning and big data in psychiatry: toward clinical applications. Current Opinion in Neurobiology, 2019, 55, 152-159.	4.2	142
33	Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk. European Archives of Psychiatry and Clinical Neuroscience, 2019, 269, 295-308.	3.2	30
34	Reward-Based Learning, Model-Based and Model-Free. , 2019, , 1-9.		0
35	Advancing Clinical Improvements for Patients Using the Theory-Driven and Data-Driven Branches of Computational Psychiatry. JAMA Psychiatry, 2018, 75, 225.	11.0	20
36	Bayesian Approaches to Learning and Decision-Making. , 2018, , 247-271.		5

3

#	Article	IF	CITATIONS
37	Empirical evidence for resource-rational anchoring and adjustment. Psychonomic Bulletin and Review, 2018, 25, 775-784.	2.8	22
38	No association of goalâ€directed and habitual control with alcohol consumption in young adults. Addiction Biology, 2018, 23, 379-393.	2.6	56
39	Value-based decision-making battery: A Bayesian adaptive approach to assess impulsive and risky behavior. Behavior Research Methods, 2018, 50, 236-249.	4.0	31
40	The anchoring bias reflects rational use of cognitive resources. Psychonomic Bulletin and Review, 2018, 25, 322-349.	2.8	112
41	Deficits in context-dependent adaptive coding in early psychosis and healthy individuals with schizotypal personality traits. Brain, 2018, 141, 2806-2819.	7.6	19
42	Generalization and Search in Risky Environments. Cognitive Science, 2018, 42, 2592-2620.	1.7	14
43	Major Depression Impairs the Use of Reward Values for Decision-Making. Scientific Reports, 2018, 8, 13798.	3.3	26
44	Self-regulation of the dopaminergic reward circuit in cocaine users with mental imagery and neurofeedback. EBioMedicine, 2018, 37, 489-498.	6.1	35
45	Drunk decisions: Alcohol shifts choice from habitual towards goal-directed control in adolescent intermediate-risk drinkers. Journal of Psychopharmacology, 2018, 32, 855-866.	4.0	10
46	When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence. Biological Psychiatry, 2017, 82, 847-856.	1.3	133
47	Theory-Based Computational Psychiatry. Biological Psychiatry, 2017, 82, 382-384.	1.3	34
48	The Neural Basis of Aversive Pavlovian Guidance during Planning. Journal of Neuroscience, 2017, 37, 10215-10229.	3.6	15
49	A Formal Valuation Framework for Emotions andÂTheir Control. Biological Psychiatry, 2017, 82, 413-420.	1.3	24
50	Computational Psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2015-310737.	1.9	156
51	Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addiction Biology, 2016, 21, 719-731.	2.6	136
52	Computational Psychiatry: From Mechanistic Insights to the Development of New Treatments. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 382-385.	1.5	18
53	Model-Free Temporal-Difference Learning and Dopamine in Alcohol Dependence: Examining Concepts From Theory and Animals in Human Imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 401-410.	1.5	12
54	A Roadmap for the Development of Applied Computational Psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 386-392.	1.5	60

#	Article	IF	CITATIONS
55	Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry,the, 2016, 3, 84-90.	7.4	46
56	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry,the, 2016, 3, 77-83.	7.4	143
57	Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 2016, 19, 404-413.	14.8	708
58	Don't Think, Just Feel the Music: Individuals with Strong Pavlovian-to-Instrumental Transfer Effects Rely Less on Model-based Reinforcement Learning. Journal of Cognitive Neuroscience, 2016, 28, 985-995.	2.3	42
59	Neural Correlates of Three Promising Endophenotypes of Depression: Evidence from the EMBARC Study. Neuropsychopharmacology, 2016, 41, 454-463.	5.4	84
60	German Translation and Validation of the Cognitive Style Questionnaire Short Form (CSQ-SF-D). PLoS ONE, 2016, 11, e0149530.	2.5	4
61	Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. European Journal of Neuroscience, 2015, 41, 477-486.	2.6	45
62	Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1595-1600.	7.1	200
63	Depression: A Decision-Theoretic Analysis. Annual Review of Neuroscience, 2015, 38, 1-23.	10.7	150
64	The effects of life stress and neural learning signals on fluid intelligence. European Archives of Psychiatry and Clinical Neuroscience, 2015, 265, 35-43.	3.2	14
65	Interplay of approximate planning strategies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3098-3103.	7.1	145
66	Decision-Theoretic Psychiatry. Clinical Psychological Science, 2015, 3, 400-421.	4.0	58
67	Serotonin's many meanings elude simple theories. ELife, 2015, 4, .	6.0	34
68	Individual differences in bodily freezing predict emotional biases in decision making. Frontiers in Behavioral Neuroscience, 2014, 8, 237.	2.0	30
69	Reward-Based Learning, Model-Based and Model-Free. , 2014, , 1-10.		9
70	Optimism as a Prior Belief about the Probability of Future Reward. PLoS Computational Biology, 2014, 10, e1003605.	3.2	35
71	Pavlovian-to-Instrumental Transfer in Alcohol Dependence: A Pilot Study. Neuropsychobiology, 2014, 70, 111-121.	1.9	76
72	Model-Based and Model-Free Decisions in Alcohol Dependence. Neuropsychobiology, 2014, 70, 122-131.	1.9	154

#	Article	IF	CITATIONS
73	Differential, but not opponent, effects of l-DOPA and citalopram on action learning with reward and punishment. Psychopharmacology, 2014, 231, 955-966.	3.1	89
74	The role of learning-related dopamine signals in addiction vulnerability. Progress in Brain Research, 2014, 211, 31-77.	1.4	72
75	Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage, 2014, 89, 171-180.	4.2	221
76	Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Frontiers in Psychology, 2014, 5, 1450.	2.1	68
77	Computational Psychiatry. , 2014, , 1-10.		1
78	Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping, 2013, 34, 1490-1499.	3.6	94
79	Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biology of Mood & Anxiety Disorders, 2013, 3, 12.	4.7	353
80	Dopamine restores reward prediction errors in old age. Nature Neuroscience, 2013, 16, 648-653.	14.8	233
81	Frontal Theta Overrides Pavlovian Learning Biases. Journal of Neuroscience, 2013, 33, 8541-8548.	3.6	168
82	Aversive Pavlovian Control of Instrumental Behavior in Humans. Journal of Cognitive Neuroscience, 2013, 25, 1428-1441.	2.3	92
83	Serotonin and Aversive Pavlovian Control of Instrumental Behavior in Humans. Journal of Neuroscience, 2013, 33, 18932-18939.	3.6	56
84	Computational Psychiatry. , 2013, , 1-10.		2
85	Bonsai Trees in Your Head: How the Pavlovian System Sculpts Goal-Directed Choices by Pruning Decision Trees. PLoS Computational Biology, 2012, 8, e1002410.	3.2	314
86	Go and no-go learning in reward and punishment: Interactions between affect and effect. NeuroImage, 2012, 62, 154-166.	4.2	328
87	Are computational models of any use to psychiatry?. Neural Networks, 2011, 24, 544-551.	5.9	93
88	Action Dominates Valence in Anticipatory Representations in the Human Striatum and Dopaminergic Midbrain. Journal of Neuroscience, 2011, 31, 7867-7875.	3.6	202
89	Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS Computational Biology, 2011, 7, e1002028.	3.2	292
90	Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings. PLoS Computational Biology, 2009, 5, e1000379.	3.2	74

#	Article	IF	CITATIONS
91	A Bayesian formulation of behavioral control. Cognition, 2009, 113, 314-328.	2.2	113
92	Serotonin in Affective Control. Annual Review of Neuroscience, 2009, 32, 95-126.	10.7	301
93	Serotonin, Inhibition, and Negative Mood. PLoS Computational Biology, 2008, 4, e4.	3.2	200
94	Encoding and Decoding Spikes for Dynamic Stimuli. Neural Computation, 2008, 20, 2325-2360.	2.2	23
95	Fast Population Coding. Neural Computation, 2007, 19, 404-441.	2.2	51
96	Screening Patients with Sensorineural Hearing Loss for Vestibular Schwannoma Using a Bayesian Classifier. Skull Base, 2007, 17, .	0.4	0
97	Efficient Estimation of Detailed Single-Neuron Models. Journal of Neurophysiology, 2006, 96, 872-890.	1.8	112
98	Is there mathematics to madness?. Brain, 0, , .	7.6	0