
Geoffrey M Henebry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6701890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment, 2002, 83, 135-148.	11.0	2,022
2	Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003, 84, 471-475.	11.0	1,948
3	On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 2207-2218.	6.3	1,321
4	A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 68-72.	3.1	1,279
5	An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010, 114, 2610-2623.	11.0	929
6	Current status of Landsat program, science, and applications. Remote Sensing of Environment, 2019, 225, 127-147.	11.0	586
7	A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 2009, 113, 1613-1627.	11.0	567
8	Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. Journal of Arid Environments, 2009, 73, 963-977.	2.4	559
9	Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment, 2004, 89, 497-509.	11.0	438
10	Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Frontiers in Ecology and the Environment, 2009, 7, 253-260.	4.0	429
11	Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment, 2014, 145, 55-67.	11.0	399
12	Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 2017, 188, 9-25.	11.0	340
13	Remote sensing of vegetation 3â€Ð structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. Journal of Geophysical Research, 2009, 114, .	3.3	225
14	Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geoscience and Remote Sensing Magazine, 2015, 3, 47-60.	9.6	216
15	Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 2005, 11, 779-790.	9.5	205
16	Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sensing of Environment, 2016, 185, 155-170.	11.0	200
17	A statistical framework for the analysis of long image time series. International Journal of Remote Sensing, 2005, 26, 1551-1573.	2.9	189
18	An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 60-64.	3.1	189

#	Article	IF	CITATIONS
19	An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 361-371.	4.9	181
20	Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sensing of Environment, 2016, 185, 129-141.	11.0	175
21	Exploration of scaling effects on coarse resolution land surface phenology. Remote Sensing of Environment, 2017, 190, 318-330.	11.0	149
22	Inferring Process from Pattern in Natural Communities. BioScience, 1989, 39, 600-605.	4.9	130
23	Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sensing of Environment, 2015, 170, 48-61.	11.0	130
24	A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images. IEEE Geoscience and Remote Sensing Letters, 2012, 9, 521-525.	3.1	128
25	Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. Journal of Hydrology: Regional Studies, 2015, 3, 285-311.	2.4	128
26	Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agricultural and Forest Meteorology, 2018, 256-257, 137-149.	4.8	125
27	Generation and evaluation of the VIIRS land surface phenology product. Remote Sensing of Environment, 2018, 216, 212-229.	11.0	110
28	Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology. , 2010, , 177-208.		106
29	Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sensing of Environment, 2020, 238, 111017.	11.0	95
30	Northern Annular Mode Effects on the Land Surface Phenologies of Northern Eurasia. Journal of Climate, 2008, 21, 4257-4279.	3.2	93
31	Projections of the Ganges–Brahmaputra precipitation—Downscaled from GCM predictors. Journal of Hydrology, 2014, 517, 120-134.	5.4	93
32	Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malaria Journal, 2012, 11, 165.	2.3	91
33	Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environmental Research Letters, 2009, 4, 045012.	5.2	88
34	Mapping impervious surface expansion using medium-resolution satellite image time series: a case study in the Yangtze River Delta, China. International Journal of Remote Sensing, 2012, 33, 7609-7628.	2.9	88
35	Improved forest change detection with terrain illumination corrected Landsat images. Remote Sensing of Environment, 2013, 136, 469-483.	11.0	83
36	Trend Analysis of the Pathfinder AVHRR Land (PAL) NDVI Data for the Deserts of Central Asia. IEEE Geoscience and Remote Sensing Letters, 2004, 1, 282-286.	3.1	81

#	Article	IF	CITATIONS
37	Detecting change in grasslands using measures of spatial dependence with landsat TM data. Remote Sensing of Environment, 1993, 46, 223-234.	11.0	77
38	Fractal signature and lacunarity in the measurement of the texture of trabecular bone in clinical CT images. Medical Engineering and Physics, 2001, 23, 369-380.	1.7	77
39	Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: five critical issues. Environmental Research Letters, 2018, 13, 123004.	5.2	77
40	Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. Journal of Remote Sensing, 2021, 2021, .	6.7	77
41	A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sensing of Environment, 2020, 242, 111752.	11.0	71
42	Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. Progress in Earth and Planetary Science, 2017, 4, .	3.0	69
43	Development and evaluation of a new algorithm for detecting 30Âm land surface phenology from VIIRS and HLS time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 37-51.	11.1	69
44	Response of vegetation growth and productivity to spring climate indicators in the conterminous United States derived from satellite remote sensing data fusion. Agricultural and Forest Meteorology, 2014, 194, 132-143.	4.8	66
45	A technique for monitoring ecological disturbance in tallgrass prairie using seasonal NDVI trajectories and a discriminant function mixture model. Remote Sensing of Environment, 1997, 61, 270-278.	11.0	65
46	Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products. Remote Sensing and Digital Image Processing, 2010, , 549-561.	0.7	62
47	Large scale climate oscillation impacts on temperature, precipitation and land surface phenology in Central Asia. Environmental Research Letters, 2018, 13, 065018.	5.2	61
48	Land surface phenology along urban to rural gradients in the U.S. Great Plains. Remote Sensing of Environment, 2015, 165, 42-52.	11.0	60
49	Pantropical dynamics of â€~intact' rain forest canopy texture. Global Ecology and Biogeography, 2001, 10, 389-397.	5.8	59
50	A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Canadian Journal of Remote Sensing, 2010, 36, S87-S110.	2.4	59
51	The Effect of Solar Illumination Angle and Sensor View Angle on Observed Patterns of Spatial Structure in Tallgrass Prairie. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 154-165.	6.3	58
52	Carbon in idle croplands. Nature, 2009, 457, 1089-1090.	27.8	57
53	Spatial model error analysis using autocorrelation indices. Ecological Modelling, 1995, 82, 75-91.	2.5	56
54	Grain production trends in Russia, Ukraine and Kazakhstan: New opportunities in an increasingly unstable world?. Frontiers of Earth Science, 2012, 6, 157-166.	2.1	56

#	Article	IF	CITATIONS
55	Nitrogen Transport from Tallgrass Prairie Watersheds. Journal of Environmental Quality, 1996, 25, 973-981.	2.0	55
56	Lacunarity analysis of spatial pattern in CT images of vertebral trabecular bone for assessing osteoporosis. Medical Engineering and Physics, 2002, 24, 129-138.	1.7	55
57	Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 2014, 12, 59-64.	4.0	55
58	Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index. Geophysical Research Letters, 2004, 31, .	4.0	54
59	Integrating remote sensing and local ecological knowledge to monitor rangeland dynamics. Ecological Indicators, 2017, 82, 106-116.	6.3	54
60	Long-term continuity in land surface phenology measurements: A comparative assessment of the MODIS land cover dynamics and VIIRS land surface phenology products. Remote Sensing of Environment, 2019, 226, 74-92.	11.0	53
61	Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sensing of Environment, 2012, 125, 147-156.	11.0	52
62	Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Frontiers of Earth Science, 2012, 6, 177-187.	2.1	51
63	Urbanization imprint on land surface phenology: The urban–rural gradient analysis for Chinese cities. Global Change Biology, 2021, 27, 2895-2904.	9.5	51
64	Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. International Journal of Applied Earth Observation and Geoinformation, 2017, 59, 104-117.	2.8	49
65	A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI). International Journal of Applied Earth Observation and Geoinformation, 2016, 47, 15-29.	2.8	48
66	Hydrological dynamics of temporary wetlands in the southern Great Plains as a function of surrounding land use. Journal of Arid Environments, 2014, 109, 6-14.	2.4	43
67	Divergent patterns of built-up urban space growth following post-socialist changes. Urban Studies, 2016, 53, 3172-3188.	3.7	42
68	Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sensing of Environment, 2020, 240, 111675.	11.0	42
69	Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia, 2002, 131, 498-505.	2.0	41
70	Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding and drought. Natural Hazards and Earth System Sciences, 2015, 15, 147-162.	3.6	41
71	Contemporary evolution and scaling of 32 major cities in China. Ecological Applications, 2018, 28, 1655-1668.	3.8	39
72	Impacts of land cover and land use change on long-term trend of land surface phenology: a case study in agricultural ecosystems. Environmental Research Letters, 2019, 14, 044020.	5.2	39

#	Article	IF	CITATIONS
73	Improving Spatial-Temporal Data Fusion by Choosing Optimal Input Image Pairs. Remote Sensing, 2018, 10, 1142.	4.0	38
74	Channel and island change in the lower Platte River, Eastern Nebraska, USA: 1855–2005. Geomorphology, 2008, 102, 407-418.	2.6	37
75	Dynamic connectivity of temporary wetlands in the southern Great Plains. Landscape Ecology, 2014, 29, 507-516.	4.2	37
76	Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation. Environmental Research Letters, 2014, 9, 124015.	5.2	36
77	Dryland belt of Northern Eurasia: contemporary environmental changes and their consequences. Environmental Research Letters, 2018, 13, 115008.	5.2	36
78	A Cross Comparison of Spatiotemporally Enhanced Springtime Phenological Measurements From Satellites and Ground in a Northern U.S. Mixed Forest. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 7513-7526.	6.3	35
79	War, drought, and phenology: changes in the land surface phenology of Afghanistan since 1982. Journal of Land Use Science, 2008, 3, 95-111.	2.2	34
80	Real-Time Monitoring of Crop Phenology in the Midwestern United States Using VIIRS Observations. Remote Sensing, 2018, 10, 1540.	4.0	32
81	Assessing sustainability indicators for tropical forests: Spatio-temporal heterogeneity, logging intensity, and dung beetle communities. Forest Ecology and Management, 2007, 253, 56-67.	3.2	31
82	Web-Enabled Landsat Data Time Series for Monitoring Urban Heat Island Impacts on Land Surface Phenology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 2043-2050.	4.9	31
83	Integrating malaria surveillance with climate data for outbreak detection and forecasting: the EPIDEMIA system. Malaria Journal, 2017, 16, 89.	2.3	30
84	Using Landsat thermal imagery and GIS for identification of groundwater discharge into shallow groundwaterâ€dominated lakes. International Journal of Remote Sensing, 2005, 26, 3649-3661.	2.9	29
85	A New Approach for the Analysis of Hyperspectral Data: Theory and Sensitivity Analysis of the Moment Distance Method. Remote Sensing, 2014, 6, 20-41.	4.0	28
86	Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in North and South America. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156, 121-134.	11.1	28
87	Remote Sensing of Land Surface Phenology: A Prospectus. , 2013, , 385-411.		27
88	Title is missing!. Plant Ecology, 2000, 151, 55-63.	1.6	26
89	Landsat still contributing to environmental research. Trends in Ecology and Evolution, 2008, 23, 182-183.	8.7	25
90	Spatial synchrony of malaria outbreaks in a highland region of Ethiopia. Tropical Medicine and International Health, 2012, 17, 1192-1201.	2.3	25

#	Article	IF	CITATIONS
91	Hurricane damage detection on four major Caribbean islands. Remote Sensing of Environment, 2019, 229, 1-13.	11.0	25
92	Determining a robust indirect measurement of leaf area index in California vineyards for validating remote sensing-based retrievals. Irrigation Science, 2019, 37, 269-280.	2.8	25
93	The July 2003 Dakota Hailswaths: Creation, Characteristics, and Possible Impacts. Monthly Weather Review, 2005, 133, 1241-1260.	1.4	24
94	A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest. Remote Sensing, 2016, 8, 297.	4.0	24
95	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	1.5	24
96	Picea glauca dynamics and spatial pattern of seedlings regeneration along a chronosequence in the mixedwood section of the boreal forest. Annals of Forest Science, 2004, 61, 789-794.	2.0	23
97	Reanalysis data underestimate significant changes in growing season weather in Kazakhstan. Environmental Research Letters, 2009, 4, 045020.	5.2	22
98	Expansion of major urban areas in the US Great Plains from 2000 to 2009 using satellite scatterometer data. Remote Sensing of Environment, 2018, 204, 524-533.	11.0	22
99	An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai–Tibet Plateau Using Landsat ETM+ and OLI Data. Remote Sensing, 2018, 10, 1069.	4.0	22
100	Detecting Cover Crop End-Of-Season Using VENµS and Sentinel-2 Satellite Imagery. Remote Sensing, 2020, 12, 3524.	4.0	22
101	Microbial Use of Leaf Litter in Prairie Streams. Journal of the North American Benthological Society, 1992, 11, 11-19.	3.1	21
102	The effect of rescaling on fine spatial resolution NDVI data: A test using multi-resolution aircraft sensor data. International Journal of Remote Sensing, 2002, 23, 3865-3871.	2.9	20
103	Effects of City Size on Thunderstorm Evolution Revealed through a Multiradar Climatology of the Central United States. Journal of Applied Meteorology and Climatology, 2018, 57, 295-317.	1.5	20
104	Drivers of urban expansion over the past three decades: a comparative study of Beijing, Tianjin, and Shijiazhuang. Environmental Monitoring and Assessment, 2019, 191, 34.	2.7	20
105	Sustainability challenges for the social-environmental systems across the Asian Drylands Belt. Environmental Research Letters, 2022, 17, 023001.	5.2	20
106	Spatial and temporal heterogeneity of agricultural fires in the central United States in relation to land cover and land use. Landscape Ecology, 2011, 26, 211-224.	4.2	19
107	Analysis of Waveform Lidar Data Using Shape-Based Metrics. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 106-110.	3.1	19
108	Impacts of Thermal Time on Land Surface Phenology in Urban Areas. Remote Sensing, 2017, 9, 499.	4.0	19

#	Article	IF	CITATIONS
109	Change of spatial information under rescaling: A case study using multi-resolution image series. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64, 592-597.	11.1	18
110	Effects of Urban Plume Aerosols on a Mesoscale Convective System. Journals of the Atmospheric Sciences, 2016, 73, 4641-4660.	1.7	18
111	Scaling relationship between CO pollution and population size over major US metropolitan statistical areas. Landscape and Urban Planning, 2019, 187, 191-198.	7.5	18
112	Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Israel Journal of Plant Sciences, 2012, 60, 65-76.	0.5	17
113	Characterizing Land Use/Land Cover Using Multi-Sensor Time Series from the Perspective of Land Surface Phenology. Remote Sensing, 2019, 11, 1677.	4.0	17
114	Phenological corrections to a field-scale, ET-based crop stress indicator: An application to yield forecasting across the U.S. Corn Belt. Remote Sensing of Environment, 2021, 257, 112337.	11.0	17
115	Land Surface Phenology and Seasonality Using Cool Earthlight in Croplands of Eastern Africa and the Linkages to Crop Production. Remote Sensing, 2017, 9, 914.	4.0	16
116	Evapotranspiration in the Nile Basin: Identifying Dynamics and Drivers, 2002–2011. Water (Switzerland), 2015, 7, 4914-4931.	2.7	15
117	Changing snow seasonality in the highlands of Kyrgyzstan. Environmental Research Letters, 2018, 13, 065006.	5.2	14
118	Hybrid phenology matching model for robust crop phenological retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 308-326.	11.1	14
119	LAI estimation across California vineyards using sUAS multi-seasonal multi-spectral, thermal, and elevation information and machine learning. Irrigation Science, 2022, 40, 731-759.	2.8	14
120	Using landscape trajectories to assess the effects of radiometric rectification. International Journal of Remote Sensing, 1993, 14, 2417-2423.	2.9	13
121	Change and persistence in land surface phenologies of the Don and Dnieper river basins. Environmental Research Letters, 2009, 4, 045018.	5.2	13
122	Phenologies of North American Grasslands and Grasses. , 2013, , 197-210.		13
123	Land surface phenologies and seasonalities using cool earthlight in mid-latitude croplands. Environmental Research Letters, 2013, 8, 045002.	5.2	13
124	Crop Growth Condition Assessment at County Scale Based on Heat-Aligned Growth Stages. Remote Sensing, 2019, 11, 2439.	4.0	13
125	Influence of a Hailstreak on Boundary Layer Evolution. Monthly Weather Review, 2005, 133, 942-960.	1.4	12
126	Linear downscaling from MODIS to landsat: connecting landscape composition with ecosystem functions. Landscape Ecology, 2019, 34, 2917-2934.	4.2	12

#	Article	IF	CITATIONS
127	Spatio-temporal change analysis to identify anomalous variation in the vegetated land surface: ENSO effects in tropical South America. Geophysical Research Letters, 2005, 32, .	4.0	11
128	Land Cover and Land Use Change in the US Prairie Pothole Region Using the USDA Cropland Data Layer. Land, 2020, 9, 166.	2.9	11
129	Application of a remote-sensing three-source energy balance model to improve evapotranspiration partitioning in vineyards. Irrigation Science, 2022, 40, 593-608.	2.8	11
130	Towards Routine Mapping of Crop Emergence within the Season Using the Harmonized Landsat and Sentinel-2 Dataset. Remote Sensing, 2021, 13, 5074.	4.0	11
131	Characterizing Cropland Phenology in Major Grain Production Areas of Russia, Ukraine, and Kazakhstan by the Synergistic Use of Passive Microwave and Visible to Near Infrared Data. Remote Sensing, 2016, 8, 1016.	4.0	10
132	Modeling the Effects of the Urban Built-Up Environment on Plant Phenology Using Fused Satellite Data. Remote Sensing, 2017, 9, 99.	4.0	10
133	Improved Change Detection with Trajectory-Based Approach: Application to Quantify Cropland Expansion in South Dakota. Land, 2019, 8, 57.	2.9	10
134	Spatio-spectral heterogeneity analysis using EO-1 Hyperion imagery. Computers and Geosciences, 2010, 36, 167-170.	4.2	9
135	Alternative methods to predict actual evapotranspiration illustrate the importance of accounting for phenology – Part 2: The event driven phenology model. Biogeosciences, 2012, 9, 161-177.	3.3	9
136	Seasonality of biological and physical systems as indicators of climatic variation and change. Climatic Change, 2020, 163, 1755-1771.	3.6	9
137	Social-Ecological Systems Across the Asian Drylands Belt (ADB). Landscape Series, 2020, , 191-225.	0.2	9
138	Simulation of responses of community structure to species interactions driven by phenotypic change. Ecological Modelling, 1995, 79, 85-94.	2.5	8
139	Monitoring Sustainability in Tropical Forests: How Changes in Canopy Spatial Pattern Can Indicate Forest Stands for Biodiversity Surveys. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 329-333.	3.1	8
140	A new concept for simulation of vegetated land surface dynamics – Part 1: The event driven phenology model. Biogeosciences, 2012, 9, 141-159.	3.3	8
141	Trends in land surface phenology across the conterminous United States (1982â€2016) analyzed by NEON domains. Ecological Applications, 2021, 31, e02323.	3.8	8
142	Evaluating a spatiotemporal shape-matching model for the generation of synthetic high spatiotemporal resolution time series of multiple satellite data. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102545.	2.8	8
143	Grasslands of the North American Great Plains. Tasks for Vegetation Science, 2003, , 157-174.	0.6	8
144	Effects of Aphid (Homoptera) Abundance and Surrounding Vegetation on the Encounter Rate of Coccinellidae (Coleoptera), Chrysopidae (Neuroptera), and Nabidae (Hemiptera) in Alfalfa. Journal of Entomological Science, 2006, 41, 211-220.	0.3	8

#	Article	IF	CITATIONS
145	Exploring the middle infrared region for urban remote sensing: seasonal and view angle effects. Remote Sensing Letters, 2013, 4, 1147-1155.	1.4	7
146	Urban–Rural Contrasts in Central-Eastern European Cities Using a MODIS 4 Micron Time Series. Remote Sensing, 2016, 8, 924.	4.0	7
147	Comparing Passive Microwave with Visible-To-Near-Infrared Phenometrics in Croplands of Northern Eurasia. Remote Sensing, 2017, 9, 613.	4.0	7
148	How much variation in land surface phenology can climate oscillation modes explain at the scale of mountain pastures in Kyrgyzstan?. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102053.	2.8	7
149	The effect of density dependence on community structure. Ecological Modelling, 1996, 93, 33-42.	2.5	6
150	Characterizing tropical forest spatioâ€ŧemporal heterogeneity using the Wide Dynamic Range Vegetation Index (WDRVI). International Journal of Remote Sensing, 2008, 29, 7285-7291.	2.9	6
151	Evaluation of a coupled eventâ€driven phenology and evapotranspiration model for croplands in the United States northern Great Plains. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5065-5081.	3.3	6
152	Constraints and Opportunities for Detecting Land Surface Phenology in Drylands. Journal of Remote Sensing, 2021, 2021, .	6.7	6
153	Area between Peaks Feature in the Derivative Reflectance Curve as a Sensitive Indicator of Change in Chlorophyll Concentration. GlScience and Remote Sensing, 2009, 46, 315-328.	5.9	5
154	Grain Production Trends in Russia, Ukraine, and Kazakhstan in the Context of the Global Climate Variability and Change. Handbook of Environmental Chemistry, 2013, , 121-141.	0.4	5
155	Urban Heat Islands as Viewed by Microwave Radiometers and Thermal Time Indices. Remote Sensing, 2016, 8, 831.	4.0	5
156	Land Surface Phenologies and Seasonalities in the US Prairie Pothole Region Coupling AMSR Passive Microwave Data with the USDA Cropland Data Layer. Remote Sensing, 2019, 11, 2550.	4.0	5
157	Agricultural production at the oblast level in post-Soviet Kyrgyzstan, 1990–2014: Implications of demographic and climate changes. Research in Globalization, 2020, 2, 100027.	3.0	5
158	Assessing the vulnerability of remittance networks to geopolitical shocks in countries of the former USSR: An econometric analysis. Applied Geography, 2021, 136, 102567.	3.7	5
159	Recent Land Surface Dynamics Across Drylands in Greater Central Asia. Landscape Series, 2020, , 25-47.	0.2	4
160	Chapter 2. Dryland East Asia in Hemispheric Context. , 0, , .		4
161	Canopy Height Estimation by Characterizing Waveform LiDAR Geometry Based on Shape-Distance Metric. AIMS Geosciences, 2016, 2, 366-390.	1.0	4
162	Towards a Single Integrative Metric on the Dynamics of Social-Environmental Systems. Sustainability, 2021, 13, 11246.	3.2	4

#	Article	IF	CITATIONS
163	On the ability of the ERS scatterometer to detect vegetation properties. , 2009, , .		3
164	Toward a U.S. National Phenological Assessment: Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5–9 October 2009. Eos, 2010, 91, 3.	0.1	3
165	Making Sense of Remotely Sensing Vegetation. BioScience, 2011, 61, 568-569.	4.9	3
166	Differential Heating in the Indian Ocean Differentially Modulates Precipitation in the Ganges and Brahmaputra Basins. Remote Sensing, 2016, 8, 901.	4.0	3
167	Application of Iterative Noise-adding Procedures for Evaluation of Moment Distance Index for LiDAR Waveforms. AIMS Geosciences, 2017, 3, 187-215.	1.0	3
168	Beyond words: effective graphics and metadata are keys to concise scientific communication. Landscape Ecology, 2011, 26, 1355-1358.	4.2	2
169	Climate Change in Turkmenistan. Handbook of Environmental Chemistry, 2012, , 39-57.	0.4	2
170	Integrated surveillance and modelling systems for climate-sensitive diseases: two case studies. Lancet, The, 2017, 389, S24.	13.7	2
171	Methodology II: Remote sensing of change in grasslands. , 2019, , 40-64.		2
172	Remote Sensing for Agriculture. Springer Remote Sensing/photogrammetry, 2021, , 7-24.	0.4	2
173	Remote Sensing of Pasture Degradation in the Highlands of the Kyrgyz Republic: Finer-Scale Analysis Reveals Complicating Factors. Remote Sensing, 2021, 13, 3449.	4.0	2
174	Integrating Landsat with MODIS Products for Vegetation Monitoring. , 2013, , 247-261.		2
175	Vegetation Phenology in Global Change Studies. , 2013, , 483-502.		2
176	Multiple Perspectives on Drylands Across Greater Central Asia. Landscape Series, 2020, , 1-9.	0.2	2
177	Change in our MIDST: Toward detection and analysis of urban land dynamics in North and South America. , 2015, , .		1
178	Evaluating the temporal stability of synthetically generated time-series for crop types in Central Germany. , 2015, , .		1
179	Viewing Global Megacities Through MODIS \$4hbox{-}upmu ext{m}\$ Radiance: Effects of Time of Year, Latitude, Land Cover, and View Zenith Angle. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 3753-3760.	4.9	1
180	Spatial Statistics. Ecology, 1993, 74, 270-270.	3.2	0

#	Article	IF	CITATIONS
181	Scale and Rescaling Quantitative Ecology: Spatial and Temporal Scaling David C. Schneider. BioScience, 1995, 45, 567-569.	4.9	0
182	Synergistic use of AMSR-E and MODIS Data for Understanding Grassland Land Surface Phenologies. , 2006, , .		0
183	War, Drought, and Phenology: Changes in the Land Surface Phenology of Afghanistan Since 1982. , 2006, , .		0
184	Phenological trend estimation: a reply to Sagarin. Frontiers in Ecology and the Environment, 2009, 7, 296-296.	4.0	0
185	MODIS 4 µm radiance in global megacities depends on seasonality, land cover, and view zenith angle. , 2015, , .		0
186	Using Web-enabled Landsat Data time series to analyze the impacts of urban areas on remotely sensed vegetation dynamics. , 2015, , .		0
187	Coupling of phenological information and synthetically generated time-series for crop types as indicator for vegetation coverage information. , 2015, , .		Ο
188	Phenology in Higher Education: Ground-Based and Spatial Analysis Tools. , 2013, , 585-602.		0