
Amitava Patra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700763/publications.pdf Version: 2024-02-01

ΔΜΙΤΛΊΛ ΡΛΤΟΛ

#	Article	IF	CITATIONS
1	Investigation of carrier dynamics of QDs using kinetic model and ultrafast spectroscopy. Optical Materials: X, 2022, 13, 100126.	0.8	3
2	Controlling Aggregation-Induced Emission in Bimetallic Gold–Copper Nanoclusters via Surface Motif Engineering. Journal of Physical Chemistry C, 2022, 126, 2896-2904.	3.1	23
3	Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials, 2022, 12, 544.	4.1	29
4	Impacts of CsPbBr ₃ /PbSe Heterostructures on Carrier Cooling Dynamics at Low Carrier Density. Advanced Optical Materials, 2022, 10, .	7.3	16
5	Impacts of Dopant and Post-Synthetic Heat-Treatment on Carrier Relaxation of Cu ²⁺ -Doped CdSe Nanoplatelets. Journal of Physical Chemistry C, 2022, 126, 7739-7747.	3.1	7
6	Silver Nanocluster/MoS ₂ Heterostructures for Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 7132-7141.	5.0	15
7	Evidence of Hot Charge Carrier Transfer in Hybrid CsPbBr ₃ /Functionalized Graphene. ChemNanoMat, 2022, 8, .	2.8	11
8	Unraveling the Effect of Single Atom Doping on the Carrier Relaxation Dynamics of MAg ₂₄ ^{<i>n</i>–} Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 5581-5588.	4.6	11
9	Modulating the Carrier Relaxation Dynamics in Heterovalently (Bi ³⁺) Doped CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 5431-5440.	4.6	18
10	Recent Advances and Perspectives on Colloidal Semiconductor Nanoplatelets for Optoelectronic Applications. Journal of Physical Chemistry C, 2021, 125, 20-30.	3.1	27
11	Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Physical Chemistry Chemical Physics, 2021, 23, 14549-14563.	2.8	6
12	One-Dimensional Silver-Thiolate Cluster-Assembly: Effect of Argentophilic Interactions on Excited-State Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 2154-2159.	4.6	10
13	Hot Hole Cooling and Transfer Dynamics from Lead Halide Perovskite Nanocrystals Using Porphyrin Molecules. Journal of Physical Chemistry C, 2021, 125, 5859-5869.	3.1	37
14	The Impact of Aggregation of Quaterthiophenes on the Excited State Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 3424-3430.	4.6	9
15	Structural Analysis and Carrier Relaxation Dynamics of 2D CsPbBr ₃ Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 12214-12223.	3.1	23
16	Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. Journal of Physical Chemistry Letters, 2021, 12, 8080-8087.	4.6	26
17	Self-assembly of copper nanoclusters: isomeric ligand effect on morphological evolution. Nanoscale Advances, 2021, 3, 5570-5575.	4.6	11
	Role of Ligand on Photophysical Properties of Nanoclusters with fcc Kernel: A Case Study of		

Ag₁₄(SC₆H₄X)₁₂(PPh₃)₈ (X =) Tj E4Qq0 0 0 mgBT /Overl

#	Article	IF	CITATIONS
19	Global and target analysis of relaxation processes of the collapsed state of P3HT polymer nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 2229-2237.	2.8	9
20	Copper Nanocluster (Cu ₂₃ NC)-Based Biomimetic System with Peroxidase Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 18335-18344.	6.7	46
21	Revealing Complex Relaxation Processes of Collapsed Conjugated Polymer Nanoparticles in the Presence of Different Shapes of Gold Nanoparticles Using Global and Target Analysis. Journal of Physical Chemistry C, 2020, 124, 26165-26173.	3.1	8
22	Manipulation of the exciton diffusion length of conjugated polymer nanoparticles: role of electron and hole scavenger molecules. Bulletin of Materials Science, 2020, 43, 1.	1.7	5
23	Investigation of Morphologyâ€Controlled Ultrafast Relaxation Processes of Aggregated Porphyrin. ChemPhysChem, 2020, 21, 2196-2205.	2.1	6
24	Identification of Nonradiative Relaxation Processes in Alloy Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 18823-18833.	3.1	4
25	Electronic Structure Modulation of 2D Colloidal CdSe Nanoplatelets by Au25 Clusters for High-Performance Photodetectors. Journal of Physical Chemistry C, 2020, 124, 19793-19801.	3.1	20
26	Observation and Analysis of Incoherent Second-Harmonic Generation in Gold Nanoclusters with Six Atoms. Journal of Physical Chemistry C, 2020, 124, 15440-15447.	3.1	7
27	Surface motifs regulated aggregation induced emission in gold–silver nanoclusters. Chemical Communications, 2020, 56, 9292-9295.	4.1	36
28	Hybrid Nanostructures of 2D CdSe Nanoplatelets for High-Performance Photodetector Using Charge Transfer Process. ACS Applied Nano Materials, 2020, 3, 4717-4727.	5.0	29
29	Ultrafast Carrier Dynamics in 2D CdSe Nanoplatelets–CsPbX ₃ Composites: Influence of the Halide Composition. Journal of Physical Chemistry C, 2020, 124, 10252-10260.	3.1	30
30	Electronic Band Structure and Ultrafast Carrier Dynamics of Two Dimensional (2D) Semiconductor Nanoplatelets (NPLs) in the Presence of Electron Acceptor for Optoelectronic Applications. Journal of Physical Chemistry C, 2020, 124, 26434-26442.	3.1	9
31	Influence of shape on the carrier relaxation dynamics of CsPbBr ₃ perovskite nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 19318-19326.	2.8	37
32	Ultrafast Relaxation Processes of Conjugated Polymer Nanoparticles in the Presence of Au Nanoparticles. Chemistry - an Asian Journal, 2019, 14, 4681-4687.	3.3	11
33	Ultrafast Energy Flow Dynamics in a Conjugated Polymer-Based Host–Guest Light-Harvesting System. Journal of Physical Chemistry C, 2019, 123, 26727-26734.	3.1	13
34	Opportunities and challenges in energy and electron transfer of nanocluster based hybrid materials and their sensing applications. Physical Chemistry Chemical Physics, 2019, 21, 5863-5881.	2.8	45
35	Ultrafast carrier dynamics in 2D–2D hybrid structures of functionalized GO and CdSe nanoplatelets. Physical Chemistry Chemical Physics, 2019, 21, 15568-15575.	2.8	21
36	Structural Insight and Ultrafast Dynamics of 2D Porphyrin Nanostructures. Journal of Physical Chemistry C, 2019, 123, 15815-15826.	3.1	11

#	Article	IF	CITATIONS
37	Role of Structural Distortion in Stabilizing Electrosynthesized Blue-Emitting Phosphorene Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 973-980.	4.6	10
38	An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale, 2019, 11, 22685-22723.	5.6	89
39	Luminescent Au ₆ and Au ₈ nanoclusters from ligand induced etching of Au nanoparticles. Materials Research Express, 2019, 6, 124004.	1.6	5
40	Engineering Atomically Precise Copper Nanoclusters with Aggregation Induced Emission. Journal of Physical Chemistry C, 2019, 123, 2506-2515.	3.1	81
41	Au/CdSe hybrid nanoflowers: a high photocurrent generating photoelectrochemical cells. Gold Bulletin, 2019, 52, 1-7.	2.4	4
42	Core-Size Dependent Fluorescent Gold Nanoclusters and Ultrasensitive Detection of Pb ²⁺ Ion. ACS Sustainable Chemistry and Engineering, 2018, 6, 2334-2343.	6.7	86
43	Ultrafast Relaxation Dynamics of Luminescent Copper Nanoclusters (Cu ₇ L ₃) and Efficient Electron Transfer to Functionalized Reduced Graphene Oxide. Journal of Physical Chemistry C, 2018, 122, 13354-13362.	3.1	44
44	Recent Advances on the Optical Properties of Eu ³⁺ Ion in Nano-Systems. Journal of Nanoscience and Nanotechnology, 2018, 18, 8047-8069.	0.9	9
45	Perspective of dye-encapsulated conjugated polymer nanoparticles for potential applications. Bulletin of Materials Science, 2018, 41, 1.	1.7	13
46	Design of a CdS/CdSe Heterostructure for Efficient H ₂ Generation and Photovoltaic Applications. Journal of Physical Chemistry C, 2018, 122, 12158-12167.	3.1	42
47	Ultrafast Carrier Dynamics of Photo-Induced Cu-Doped CdSe Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 16992-17000.	3.1	32
48	Antibacterial and Photocatalytic Properties of ZnO–9-Aminoacridine Hydrochloride Hydrate Drug Nanoconjugates. ACS Omega, 2018, 3, 7962-7970.	3.5	32
49	Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 37, 1-22.	11.6	147
50	Ultrafast Energy Transfer Followed by Electron Transfer in a Polymeric Nanoantenna-Based Light Harvesting System. Journal of Physical Chemistry C, 2018, 122, 20144-20152.	3.1	16
51	Nano-bio assemblies for artificial light harvesting systems. , 2018, , .		0
52	Strategy toward Designing Semiconducting Polymer Nanoparticle–Multichomophoric Dye Assembly. Journal of Physical Chemistry C, 2017, 121, 4050-4059.	3.1	13
53	Design of CdTeSe–Porphyrin–Graphene Composite for Photoinduced Electron Transfer and Photocurrent Generation. ACS Sustainable Chemistry and Engineering, 2017, 5, 3002-3010.	6.7	31
54	Structural and electronic investigation of metal-semiconductor hybrid tetrapod hetero-structures. Gold Bulletin, 2017, 50, 105-110.	2.4	5

#	Article	IF	CITATIONS
55	An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale, 2017, 9, 6791-6799.	5.6	66
56	Light Harvesting and Photocurrent Generation in a Conjugated Polymer Nanoparticle–Reduced Graphene Oxide Composite. ChemPhysChem, 2017, 18, 1308-1316.	2.1	23
57	Silver(I)-Induced Conformation Change of DNA: Gold Nanocluster as a Spectroscopic Probe. Journal of Physical Chemistry C, 2017, 121, 4608-4617.	3.1	31
58	Interfacial Charge Transfer between Zinc Oxide Nanoparticles and Methyl Viologen: Influence of Size. ChemistrySelect, 2017, 2, 9869-9877.	1.5	7
59	Core size matters! High Raman enhancing core tunable Au/Ag bimetallic core-shell nanoparticles. Gold Bulletin, 2017, 50, 313-317.	2.4	9
60	Exciton Dynamics and Formation Mechanism of MEH-PPV Polymer-Based Nanostructures. Journal of Physical Chemistry C, 2017, 121, 21062-21072.	3.1	17
61	Photon Harvesting in Conjugated Polymer-Based Functional Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 4608-4620.	4.6	31
62	Nanoscale Strategies for Light Harvesting. Chemical Reviews, 2017, 117, 712-757.	47.7	444
63	Efficient Whiteâ€Light Generation from Ionically Selfâ€Assembled Triplyâ€Fluorescent Organic Nanoparticles. Chemistry - A European Journal, 2016, 22, 8855-8863.	3.3	17
64	Making and Breaking of DNA-Metal Base Pairs: Hg ²⁺ and Au Nanocluster Based Off/On Probe. Journal of Physical Chemistry C, 2016, 120, 17127-17135.	3.1	26
65	A ternary system of quantum dot – Porphyrin – Semiconducting organic nanoparticles for light harvesting. Synthetic Metals, 2016, 222, 76-83.	3.9	10
66	Graphene induced porphyrin nano-aggregates for efficient electron transfer and photocurrent generation. Journal of Materials Chemistry C, 2016, 4, 6027-6036.	5.5	31
67	Functionalized dye encapsulated polymer nanoparticles attached with a BSA scaffold as efficient antenna materials for artificial light harvesting. Nanoscale, 2016, 8, 16034-16043.	5.6	33
68	Light Harvesting and Whiteâ€Light Generation in a Composite of Carbon Dots and Dyeâ€Encapsulated BSAâ€Proteinâ€Capped Gold Nanoclusters. Chemistry - A European Journal, 2016, 22, 11699-11705.	3.3	33
69	Size of CdTe Quantum Dots Controls the Hole Transfer Rate in CdTe Quantum Dots–MEHPPV Polymer Nanoparticle Hybrid. Journal of Physical Chemistry C, 2016, 120, 25142-25150.	3.1	30
70	Graphene–Porphyrin Nanorod Composites for Solar Light Harvesting. ACS Sustainable Chemistry and Engineering, 2016, 4, 1562-1568.	6.7	57
71	Structural evolution, photoinduced energy transfer in Au nanocluster–CdTe QD nanocomposites and amino acid sensing. Journal of Materials Chemistry C, 2016, 4, 486-496.	5.5	19
72	Photon Harvesting in Sunscreenâ€Based Functional Nanoparticles. ChemPhysChem, 2015, 16, 3618-3624.	2.1	6

#	Article	IF	CITATIONS
73	Photoswitching and Thermoresponsive Properties of Conjugated Multiâ€chromophore Nanostructured Materials. Small, 2015, 11, 6317-6324.	10.0	13
74	2D Hybrid Nanostructure of Reduced Graphene Oxide–CdS Nanosheet for Enhanced Photocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 13251-13259.	8.0	260
75	Conjugated polymer P3HT–Au hybrid nanostructures for enhancing photocatalytic activity. Physical Chemistry Chemical Physics, 2015, 17, 15392-15399.	2.8	54
76	Influence of Size and Shape on the Photocatalytic Properties of SnO ₂ Nanocrystals. ChemPhysChem, 2015, 16, 1017-1025.	2.1	64
77	Multichromophoric Organic Molecules Encapsulated in Polymer Nanoparticles for Artificial Light Harvesting. ChemPhysChem, 2015, 16, 796-804.	2.1	35
78	A study into the role of surface capping on energy transfer in metal cluster–semiconductor nanocomposites. Nanoscale, 2015, 7, 20697-20708.	5.6	31
79	Lanthanideâ€Doped Nanocrystals: Strategies for Improving the Efficiency of Upconversion Emission and Their Physical Understanding. ChemPhysChem, 2015, 16, 505-521.	2.1	51
80	Photoinduced energy transfer in dye encapsulated polymer nanoparticle–CdTe quantum dot light harvesting assemblies. Materials Horizons, 2015, 2, 60-67.	12.2	17
81	Photophysical study of P3HT/NDI based hybrid nanoparticles. European Physical Journal D, 2014, 68, 1.	1.3	3
82	Non-radiative relaxation and rectification behavior of metal/semiconductor tetrapod heterostructures. Applied Physics Letters, 2014, 104, .	3.3	12
83	Nonlinear Optical Switching and Enhanced Nonlinear Optical Response of Au–CdSe Heteronanostructures. Journal of Physical Chemistry C, 2014, 118, 30333-30341.	3.1	86
84	Fluorescent AuAg alloy clusters: synthesis and SERS applications. Journal of Materials Chemistry C, 2014, 2, 3005-3012.	5.5	46
85	Singlet Oxygen Generation from Polymer Nanoparticles–Photosensitizer Conjugates Using FRET Cascade. Journal of Physical Chemistry C, 2014, 118, 9733-9740.	3.1	38
86	Interactions of π-conjugated polymers with inorganic nanocrystals. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 51-70.	11.6	47
87	Surfactant-Assisted Porphyrin Based Hierarchical Nano/Micro Assemblies and Their Efficient Photocatalytic Behavior. ACS Applied Materials & Interfaces, 2014, 6, 130-136.	8.0	87
88	Photophysical and photoconductivity properties of thiol-functionalized graphene–CdSe QD composites. RSC Advances, 2014, 4, 13788.	3.6	34
89	Structural interpretation of SnO ₂ nanocrystals of different morphologies synthesized by microwave irradiation and hydrothermal methods. CrystEngComm, 2014, 16, 1079-1090.	2.6	57
90	Recent development of core–shell SnO ₂ nanostructures and their potential applications. Journal of Materials Chemistry C, 2014, 2, 6706-6722.	5.5	71

#	Article	IF	CITATIONS
91	Single and multistep energy transfer processes within doped polymer nanoparticles. Photochemical and Photobiological Sciences, 2014, 13, 1241-1252.	2.9	28
92	Photophysical properties of ionic liquid-assisted porphyrin nanoaggregate–nickel phthalocyanine conjugates and singlet oxygen generation. Journal of Materials Chemistry C, 2014, 2, 8691-8699.	5.5	14
93	Study of binding interactions between MPT63 protein and Au nanocluster. RSC Advances, 2014, 4, 35059-35066.	3.6	14
94	Photophysical Properties of Doped Carbon Dots (N, P, and B) and Their Influence on Electron/Hole Transfer in Carbon Dots–Nickel (II) Phthalocyanine Conjugates. Journal of Physical Chemistry C, 2014, 118, 20034-20041.	3.1	274
95	Microstructure and photoluminescence properties of ternary Cd0.2Zn0.8S quantum dots synthesized by mechanical alloying. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
96	Recent Advances of Doping of SnO ₂ Nanocrystals for Their Potential Applications. Transactions of the Indian Ceramic Society, 2013, 72, 89-99.	1.0	22
97	A Brief Overview of Some Physical Studies on the Relaxation Dynamics and Förster Resonance Energy Transfer of Semiconductor Quantum Dots. ChemPhysChem, 2013, 14, 2641-2653.	2.1	27
98	Fluorescence Dynamics and Stochastic Model for Electronic Interaction of Graphene Oxide with CdTe QD in Graphene Oxide-CdTe QD Composite. Journal of Physical Chemistry C, 2013, 117, 23987-23995.	3.1	49
99	Steady state and time resolved spectroscopic study of QD–DNA interaction. Journal of Luminescence, 2013, 134, 401-407.	3.1	8
100	Photophysics and Dynamics of Dye-Doped Conjugated Polymer Nanoparticles by Time-Resolved and Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 26750-26759.	3.1	31
101	Steady state and time resolved spectroscopic study of C-dots–MEH–PPV polymer nanoparticles composites. Physical Chemistry Chemical Physics, 2013, 15, 16834.	2.8	26
102	Lanthanide based resonance energy transfer (LRET) between Ce-doped LaPO4 nanorods and coumarin 440 dye. RSC Advances, 2013, 3, 13372.	3.6	14
103	Fluorescence Switching of Quantum Dot in Quantum Dot–Porphyrin–Cucurbit [7] Uril Assemblies. Journal of Physical Chemistry C, 2013, 117, 3069-3077.	3.1	39
104	Band Gap Tuning of ZnO/In ₂ S ₃ Core/Shell Nanorod Arrays for Enhanced Visible-Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 5558-5567.	3.1	241
105	Detection of Hg ²⁺ and F ^{â^'} lons by Using Fluorescence Switching of Quantum Dots in an Au luster–CdTe QD Nanocomposite. Chemistry - A European Journal, 2013, 19, 5980-5987.	3.3	91
106	Formation of Heteroepitaxy in Different Shapes of Au–CdSe Metal–Semiconductor Hybrid Nanostructures. Small, 2013, 9, 3424-3432.	10.0	57
107	Hybrid Nanostructures: Formation of Heteroepitaxy in Different Shapes of Au-CdSe Metal-Semiconductor Hybrid Nanostructures (Small 20/2013). Small, 2013, 9, 3423-3423.	10.0	1
108	Hybrid Colloidal Au-CdSe Pentapod Heterostructures Synthesis and Their Photocatalytic Properties. ACS Applied Materials & Interfaces, 2012, 4, 6266-6272.	8.0	118

#	Article	IF	CITATIONS
109	Photophysical Properties of Au dTe Hybrid Nanostructures of Varying Sizes and Shapes. ChemPhysChem, 2012, 13, 3989-3996.	2.1	33
110	Energy/Hole Transfer Phenomena in Hybrid α‧exithiophene (α‧TH) Nanoparticle–CdTe Quantumâ€Đot Nanocomposites. ChemPhysChem, 2012, 13, 4155-4162.	2.1	18
111	Impacts of core–shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale, 2012, 4, 3608.	5.6	130
112	Photocatalytic properties of semiconductor SnO2/CdS heterostructure nanocrystals. RSC Advances, 2012, 2, 10222.	3.6	66
113	A simple approach to generate efficient white light emission from a ZnO–ionic liquid complex. RSC Advances, 2012, 2, 4879.	3.6	29
114	Photophysical Properties, Self-Assembly Behavior, and Energy Transfer of Porphyrin-Based Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 11401-11407.	3.1	54
115	Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core–Shell Nanorods. Journal of Physical Chemistry C, 2012, 116, 23653-23662.	3.1	249
116	Photoluminescence quenching of semiconducting polymer nanoparticles in presence of Au nanoparticles. Bulletin of Materials Science, 2012, 35, 719-725.	1.7	12
117	Lattice Strain Controls the Carrier Relaxation Dynamics in Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Alloy Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 15167-15173.	3.1	45
118	Recent Advances in Energy Transfer Processes in Gold-Nanoparticle-Based Assemblies. Journal of Physical Chemistry C, 2012, 116, 17307-17317.	3.1	72
119	Spectroscopic Investigations on the H-Type Aggregation of Coumarin 153 Dye Molecules: Role of Au Nanoparticles and Î ³ - Cyclodextrin. Journal of Fluorescence, 2012, 22, 303-310.	2.5	10
120	Energy Transfer and Confined Motion of Dyes Trapped in Semiconducting Conjugated Polymer Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 20832-20839.	3.1	40
121	Interaction of Gold Nanoparticle with Human Serum Albumin (HSA) Protein Using Surface Energy Transfer. Journal of Physical Chemistry C, 2011, 115, 24037-24044.	3.1	116
122	Porphyrin-Based Functional Nanoparticles: Conformational and Photophysical Properties of Bis-Porphyrin and Bis-Porphyrin Encapsulated Polymer Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 24029-24036.	3.1	18
123	Relaxation Dynamics of Anisotropic Shaped CdS Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 16867-16872.	3.1	37
124	Surface Defect-Related Luminescence Properties of SnO ₂ Nanorods and Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 118-124.	3.1	304
125	SURFACE ENERGY TRANSFER BETWEEN NANOSTRUCTURED GOLD AND DYE MOLECULES. International Journal of Nanoscience, 2011, 10, 147-150.	0.7	0
126	STEADY STATE AND TIME RESOLVED SPECTROSCOPIC STUDY OF CONFINED DYE INSIDE Î ³ -CD IN PRESENCE OF Au NANOPARTICLES. International Journal of Nanoscience, 2011, 10, 867-871.	0.7	0

#	Article	IF	CITATIONS
127	Energy Transfer between Confined Dye and Surface Attached Au Nanoparticles of Mesoporous Silica. Journal of Physical Chemistry C, 2010, 114, 707-714.	3.1	40
128	Core–shell nanostructures and nanocomposites of Ag@TiO2: effect of capping agent and shell thickness on the optical properties. Journal of Nanoparticle Research, 2010, 12, 1033-1044.	1.9	14
129	Efficient Energy Transfer between Confined Dye and Y-Zeolite Functionalized Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 19667-19672.	3.1	25
130	Quenching of Confined C480 Dye in the Presence of Metal-Conjugated γ-Cyclodextrin. Journal of Physical Chemistry C, 2010, 114, 11409-11413.	3.1	17
131	Metal Conjugated Semiconductor Hybrid Nanoparticle-Based Fluorescence Resonance Energy Transfer. Journal of Physical Chemistry C, 2010, 114, 4869-4874.	3.1	77
132	Hostâ^'Guest Energy Transfer: Semiconducting Polymer Nanoparticles and Au Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 11787-11795.	3.1	47
133	Size Dependent Resonance Energy Transfer between Semiconductor Quantum Dots and Dye Using FRET and Kinetic Model. Journal of Physical Chemistry C, 2010, 114, 3891-3897.	3.1	57
134	Facile Chemical Synthesis of Nanocrystalline Thermoelectric Alloys Based on Biâ^'Sbâ^'Teâ^'Se. Crystal Growth and Design, 2010, 10, 3983-3989.	3.0	52
135	Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale, 2010, 2, 1196.	5.6	86
136	Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals. Journal of Applied Physics, 2010, 108, .	2.5	51
137	Fabrication and optical properties of core/shell CdS/LaPO ₄ :Eunanorods. Journal of Materials Chemistry, 2010, 20, 916-922.	6.7	71
138	Influence of surface coating on the upconversion emission properties of LaPO4:Yb/Tm core-shell nanorods. Journal of Applied Physics, 2009, 105, 113532.	2.5	39
139	Optical and Electrical Properties of Eu ³⁺ -Doped SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4375-4380.	3.1	100
140	Growth, Optical, and Field Emission Properties of Aligned CdS Nanowires. Crystal Growth and Design, 2009, 9, 4157-4162.	3.0	46
141	A Stochastic Model for Energy Transfer from CdS Quantum Dots/Rods (Donors) to Nile Red Dye (Acceptors). Journal of Physical Chemistry C, 2009, 113, 19488-19492.	3.1	95
142	Formation of Self-Assembled Au Nanoparticles and the Study of Their Optical Properties by Steady-State and Time-Resolved Spectroscopies. Journal of Physical Chemistry C, 2009, 113, 13125-13132.	3.1	31
143	Fluorescence enhancement and quenching of Eu3+ ions by Au–ZnO core-shell and Au nanoparticles. Applied Physics Letters, 2009, 95, 063103.	3.3	42
144	Upconversion emission of BaTiO3: Er nanocrystals. Bulletin of Materials Science, 2008, 31, 461-465.	1.7	30

#	Article	IF	CITATIONS
145	Synthesis and spectroscopic study of high quality alloy Cd x Zn1â^'x S nanocrystals. Journal of Chemical Sciences, 2008, 120, 557-564.	1.5	25
146	Donor–Acceptor Systems: Energy Transfer from CdS Quantum Dots/Rods to Nile Red Dye. ChemPhysChem, 2008, 9, 2052-2058.	2.1	42
147	Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals. Journal of Luminescence, 2008, 128, 1235-1240.	3.1	43
148	Efficient resonance energy transfer from dye to Au@SnO2 core–shell nanoparticles. Chemical Physics Letters, 2008, 462, 88-91.	2.6	24
149	Resonance Energy Transfer from Rhodamine 6G to Gold Nanoparticles by Steady-State and Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 3216-3222.	3.1	93
150	Enhancement of Upconversion Emission of LaPO ₄ :Er@Yb Coreâ^'Shell Nanoparticles/Nanorods. Journal of Physical Chemistry C, 2008, 112, 9650-9658.	3.1	153
151	Tuning of Crystal Phase and Luminescence Properties of Eu ³⁺ Doped Sodium Yttrium Fluoride Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 3223-3231.	3.1	103
152	Composition effects on quantum dot-based resonance energy transfer. Applied Physics Letters, 2008, 93, 183104.	3.3	19
153	Au Nanoparticle-Based Surface Energy Transfer Probe for Conformational Changes of BSA Protein. Journal of Physical Chemistry C, 2008, 112, 17945-17951.	3.1	123
154	Au@ZnO Coreâ^'Shell Nanoparticles Are Efficient Energy Acceptors with Organic Dye Donors. Journal of Physical Chemistry C, 2008, 112, 11650-11656.	3.1	106
155	Influence of Crystal Phase and Excitation Wavelength on Luminescence Properties of Eu ³⁺ -Doped Sodium Yttrium Fluoride Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19283-19292.	3.1	87
156	Upconversion in Er3+-doped ZrO2 nanocrystals pumped at 1.426μm. Journal of Applied Physics, 2008, 103,	2.5	14
157	Influence of Surface Coating on Physical Properties of TiO2/Eu3+Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 7004-7010.	3.1	47
158	Understanding the Local Structures of Eu and Zr in Eu2O3Doped and Coated ZrO2Nanocrystals by EXAFS Study. Journal of Physical Chemistry C, 2007, 111, 571-578.	3.1	47
159	Shape controlled synthesis and luminescence properties of ZnO: Eu3+ nanostructures. Chemical Physics Letters, 2007, 440, 121-124.	2.6	54
160	Study of photophysical properties of capped CdS nanocrystals. Journal of Luminescence, 2007, 124, 327-332.	3.1	38
161	Understanding the role of particle size on photophysical properties of CdS:Eu3+ nanocrystals. Journal of Luminescence, 2007, 126, 387-392.	3.1	48
162	Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler. Applied Physics Letters, 2007, 91, .	3.3	100

#	Article	IF	CITATIONS
163	Luminescence Properties of Doped Nanostructures. , 2007, , .		ο
164	Preparation and photoluminescence properties of Y2SiO5:Eu3+ nanocrystals. Physical Chemistry Chemical Physics, 2006, 8, 3342.	2.8	42
165	Role of dopant concentration and surface coating on photophysical properties of CdS: Eu3+ nanocrystals. Physical Chemistry Chemical Physics, 2006, 8, 1329.	2.8	57
166	Role of Surface Coating in ZrO2/Eu3+Nanocrystals. Langmuir, 2006, 22, 6321-6327.	3.5	74
167	Synthesis and characterization of PVP-encapsulated ZnS nanoparticles. Optical Materials, 2006, 28, 1047-1053.	3.6	145
168	Investigating Nonradiative Relaxation in Optically Pumped Er3+-doped BaTiO3 Nanocrystals. , 2006, , .		0
169	Blue upconversion emission of Tm3+–Yb3+ in ZrO2 nanocrystals: Role of Yb3+ ions. Chemical Physics Letters, 2005, 407, 477-481.	2.6	86
170	Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G. Chemical Physics Letters, 2005, 413, 311-314.	2.6	49
171	Understanding the influence of nanoenvironment on luminescence of rare-earth ions. Pramana - Journal of Physics, 2005, 65, 901-907.	1.8	5
172	Luminescence of Ce3+in Y2SiO5Nanocrystals:Â Role of Crystal Structure and Crystal Size. Journal of Physical Chemistry B, 2005, 109, 2699-2702.	2.6	68
173	Red to Blue Tunable Upconversion in Tm3+-Doped ZrO2Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 10142-10146.	2.6	74
174	Influence of nanoenvironment on luminescence of Eu3+activated SnO2 nanocrystals. Solid State Communications, 2004, 131, 785-788.	1.9	56
175	Study of luminescence properties of Er3+-ions in new tellurite glasses. Optical Materials, 2004, 26, 267-270.	3.6	81
176	Study of photoluminescence properties of Er3+ ions in SiO2–GeO2 and Al2O3 nanoparticles. Solid State Communications, 2004, 132, 299-303.	1.9	14
177	Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals. Chemical Physics Letters, 2004, 387, 35-39.	2.6	56
178	Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Applied Physics Letters, 2004, 84, 4753-4755.	3.3	273
179	Charge Carrier Transport in Poly(N-vinylcarbazole):CdS Quantum Dot Hybrid Nanocomposite. Journal of Physical Chemistry B, 2004, 108, 1556-1562.	2.6	87
180	Influence of nanoenvironment on luminescence lifetime of Er^3+-activated ZrO_2 nanocrystals. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 681.	2.1	13

#	Article	IF	CITATIONS
181	Fluorescence Upconversion Properties of Er3+-Doped TiO2and BaTiO3Nanocrystallites. Chemistry of Materials, 2003, 15, 3650-3655.	6.7	257
182	Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals. Applied Physics Letters, 2003, 83, 284-286.	3.3	244
183	A New Approach to Design Light Emitting Devices Using Electroactive Dyes. Materials Research Society Symposia Proceedings, 2002, 734, 9241.	0.1	0
184	Electroluminescence Properties of Systematically Derivatized Organic Chromophores Containing Electron Donor and Acceptor Groups. Chemistry of Materials, 2002, 14, 4044-4048.	6.7	48
185	Upconversion in Er3+:ZrO2Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 1909-1912.	2.6	375
186	Cadmium Sulfide Aggregates through Reverse Micelles. Journal of the American Ceramic Society, 2001, 84, 1439-1444.	3.8	29
187	Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. Journal of Alloys and Compounds. 2000. 300-301. 147-151.	5.5	126