
Gustavo Deco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6700219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal irreversibility of neural dynamics as a signature of consciousness. Cerebral Cortex, 2023, 33, 1856-1865.	2.9	14
2	The human posterior parietal cortex: effective connectome, and its relation to function. Cerebral Cortex, 2023, 33, 3142-3170.	2.9	21
3	Multiple cortical visual streams in humans. Cerebral Cortex, 2023, 33, 3319-3349.	2.9	23
4	Bridging the gap between single receptor type activity and wholeâ€brain dynamics. FEBS Journal, 2022, 289, 2067-2084.	4.7	10
5	Macroscopic Quantities of Collective Brain Activity during Wakefulness and Anesthesia. Cerebral Cortex, 2022, 32, 298-311.	2.9	6
6	Whole-brain modeling to predict optimal deep brain stimulation targeting. , 2022, , 543-559.		2
7	The effective connectivity of the human hippocampal memory system. Cerebral Cortex, 2022, 32, 3706-3725.	2.9	28
8	Dynamic primitives of brain network interaction. NeuroImage, 2022, 250, 118928.	4.2	18
9	Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Research Reviews, 2022, 75, 101555.	10.9	37
10	The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cerebral Cortex, 2022, 33, 330-356.	2.9	43
11	Brain simulation as a cloud service: The Virtual Brain on EBRAINS. NeuroImage, 2022, 251, 118973.	4.2	42
12	Functional network antagonism and consciousness. Network Neuroscience, 2022, 6, 998-1009.	2.6	4
13	Large-scale societal dynamics are reflected in human mood and brain. Scientific Reports, 2022, 12, 4646.	3.3	1
14	The effect of external stimulation on functional networks in the aging healthy human brain. Cerebral Cortex, 2022, 33, 235-245.	2.9	8
15	On the intersection between data quality and dynamical modelling of large-scale fMRI signals. NeuroImage, 2022, 256, 119051.	4.2	11
16	Effects of classic psychedelic drugs on turbulent signatures in brain dynamics. Network Neuroscience, 2022, 6, 1104-1124.	2.6	10
17	Differences in the critical dynamics underlying the human and fruit-fly connectome. Physical Review Research, 2022, 4, .	3.6	4
18	Microbiota alterations in proline metabolism impact depression. Cell Metabolism, 2022, 34, 681-701.e10.	16.2	77

#	Article	IF	CITATIONS
19	Meditation-induced effects on whole-brain structural and effective connectivity. Brain Structure and Function, 2022, 227, 2087-2102.	2.3	3
20	Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neuroscience and Biobehavioral Reviews, 2022, 138, 104689.	6.1	45
21	Wholeâ€brain dynamics differentiate among cisgender and transgender individuals. Human Brain Mapping, 2022, 43, 4103-4115.	3.6	6
22	Understanding brain states across spacetime informed by whole-brain modelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	3.4	19
23	Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. NeuroImage: Clinical, 2022, 35, 103055.	2.7	15
24	The human language effective connectome. Neurolmage, 2022, 258, 119352.	4.2	34
25	The INSIDEOUT framework provides precise signatures of the balance of intrinsic and extrinsic dynamics in brain states. Communications Biology, 2022, 5, .	4.4	23
26	Spontaneous Activity, Models of. , 2022, , 3289-3293.		0
27	Multiscale Brain Connectivity. , 2022, , 2105-2107.		0
28	Unifying turbulent dynamics framework distinguishes different brain states. Communications Biology, 2022, 5, .	4.4	20
29	Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome. Communications Physics, 2022, 5, .	5.3	37
30	Signature of consciousness in brain-wide synchronization patterns of monkey and human fMRI signals. Neurolmage, 2021, 226, 117470.	4.2	33
31	Whole-Brain Dynamics in Aging: Disruptions in Functional Connectivity and the Role of the Rich Club. Cerebral Cortex, 2021, 31, 2466-2481.	2.9	29
32	Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neurolmage, 2021, 227, 117618.	4.2	18
33	Revisiting the global workspace orchestrating the hierarchical organization of the human brain. Nature Human Behaviour, 2021, 5, 497-511.	12.0	61
34	Increased brain atrophy and lesion load is associated with stronger lower alpha MEG power in multiple sclerosis patients. NeuroImage: Clinical, 2021, 30, 102632.	2.7	6
35	Noise-driven multistability vs deterministic chaos in phenomenological semi-empirical models of whole-brain activity. Chaos, 2021, 31, 023127.	2.5	16
36	Ephaptic coupling in white matter fibre bundles modulates axonal transmission delays. PLoS Computational Biology, 2021, 17, e1007858.	3.2	17

#	Article	IF	CITATIONS
37	The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia, 2021, 154, 107775.	1.6	9
38	Increased sensitivity to strong perturbations in a whole-brain model of LSD. NeuroImage, 2021, 230, 117809.	4.2	20
39	Multiscale dynamic mean field (MDMF) model relates resting-state brain dynamics with local cortical excitatory–inhibitory neurotransmitter homeostasis. Network Neuroscience, 2021, 5, 1-26.	2.6	17
40	Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning. Computational Intelligence and Neuroscience, 2021, 2021, 1-31.	1.7	9
41	Leonardo da Vinci and the search for order in neuroscience. Current Biology, 2021, 31, R704-R709.	3.9	9
42	Circuit mechanisms for the chemical modulation of cortex-wide network interactions and behavioral variability. Science Advances, 2021, 7, .	10.3	31
43	Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Communications Biology, 2021, 4, 854.	4.4	23
44	Dynamical consequences of regional heterogeneity in the brain's transcriptional landscape. Science Advances, 2021, 7, .	10.3	69
45	Genetic influences on hub connectivity of the human connectome. Nature Communications, 2021, 12, 4237.	12.8	92
46	Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness. PLoS Computational Biology, 2021, 17, e1009139.	3.2	45
47	Nonequilibrium brain dynamics as a signature of consciousness. Physical Review E, 2021, 104, 014411.	2.1	29
48	Classification of Complex Emotions Using EEG and Virtual Environment: Proof of Concept and Therapeutic Implication. Frontiers in Human Neuroscience, 2021, 15, 711279.	2.0	2
49	Functional harmonics reveal multi-dimensional basis functions underlying cortical organization. Cell Reports, 2021, 36, 109554.	6.4	24
50	Rare long-range cortical connections enhance human information processing. Current Biology, 2021, 31, 4436-4448.e5.	3.9	46
51	Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Communications Biology, 2021, 4, 1037.	4.4	40
52	The effect of noise on the synchronization dynamics of the Kuramoto model on a large human connectome graph. Neurocomputing, 2021, 461, 696-704.	5.9	9
53	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. Brain Communications, 2021, 3, fcab233.	3.3	15
54	Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics. Frontiers in Neuroscience, 2021, 15, 715861.	2.8	8

#	Article	IF	CITATIONS
55	mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nature Communications, 2021, 12, 6084.	12.8	66
56	Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nature Communications, 2021, 12, 6373.	12.8	48
57	The Menstrual Cycle Modulates Whole-Brain Turbulent Dynamics. Frontiers in Neuroscience, 2021, 15, 753820.	2.8	21
58	Harmonic waves as the fundamental principle underlying temporo-spatial dynamics of brain and mind. Physics of Life Reviews, 2020, 33, 67-69.	2.8	1
59	Breakdown of Whole-brain Dynamics in Preterm-born Children. Cerebral Cortex, 2020, 30, 1159-1170.	2.9	11
60	Uncovering the spatiotemporal scales of common neuro-mental constructs. Physics of Life Reviews, 2020, 33, 64-66.	2.8	4
61	Effective connectivity in autism. Autism Research, 2020, 13, 32-44.	3.8	34
62	Low entropy map of brain oscillatory activity identifies spatially localized events: A new method for automated epilepsy focus prediction. NeuroImage, 2020, 208, 116410.	4.2	8
63	Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Network Neuroscience, 2020, 4, 338-373.	2.6	40
64	Brain States and Transitions: Insights from Computational Neuroscience. Cell Reports, 2020, 32, 108128.	6.4	139
65	The Dynamics of Functional Brain Networks Associated With Depressive Symptoms in a Nonclinical Sample. Frontiers in Neural Circuits, 2020, 14, 570583.	2.8	34
66	Generative Embeddings of Brain Collective Dynamics Using Variational Autoencoders. Physical Review Letters, 2020, 125, 238101.	7.8	26
67	Turbulent-like Dynamics in the Human Brain. Cell Reports, 2020, 33, 108471.	6.4	62
68	The Aging Imageomics Study: rationale, design and baseline characteristics of the study population. Mechanisms of Ageing and Development, 2020, 189, 111257.	4.6	18
69	Lifespan associated global patterns of coherent neural communication. NeuroImage, 2020, 216, 116824.	4.2	27
70	Reduced spatiotemporal brain dynamics are associated with increased depressive symptoms after a relationship breakup. NeuroImage: Clinical, 2020, 27, 102299.	2.7	16
71	Editorial: The Embodied Brain: Computational Mechanisms of Integrated Sensorimotor Interactions With a Dynamic Environment. Frontiers in Computational Neuroscience, 2020, 14, 53.	2.1	1
72	Propagation of BOLD Activity Reveals Task-dependent Directed Interactions Across Human Visual Cortex. Cerebral Cortex, 2020, 30, 5899-5914.	2.9	6

#	Article	IF	CITATIONS
73	Data augmentation based on dynamical systems for the classification of brain states. Chaos, Solitons and Fractals, 2020, 139, 110069.	5.1	14
74	Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9566-9576.	7.1	173
75	Beyond the disconnectivity hypothesis of schizophrenia. Cerebral Cortex, 2020, 30, 1213-1233.	2.9	27
76	Ghost Attractors in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD Phase-Locking States. Frontiers in Systems Neuroscience, 2020, 14, 20.	2.5	75
77	Human brain connectivity: Clinical applications for clinical neurophysiology. Clinical Neurophysiology, 2020, 131, 1621-1651.	1.5	68
78	Modeling regional changes in dynamic stability during sleep and wakefulness. NeuroImage, 2020, 215, 116833.	4.2	48
79	Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively. ELife, 2020, 9, .	6.0	12
80	Characterizing the Dynamical Complexity Underlying Meditation. Frontiers in Systems Neuroscience, 2019, 13, 27.	2.5	31
81	Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability. NeuroImage, 2019, 201, 116007.	4.2	36
82	Awakening: Predicting external stimulation to force transitions between different brain states. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18088-18097.	7.1	176
83	Disrupted brain structural connectivity in Pediatric Bipolar Disorder with psychosis. Scientific Reports, 2019, 9, 13638.	3.3	22
84	Brain songs framework used for discovering the relevant timescale of the human brain. Nature Communications, 2019, 10, 583.	12.8	45
85	Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage, 2019, 199, 127-142.	4.2	152
86	A new computational approach to estimate whole-brain effective connectivity from functional and structural MRI, applied to language development. Scientific Reports, 2019, 9, 8479.	3.3	16
87	Reliable local dynamics in the brain across sessions are revealed by wholeâ€brain modeling of resting state activity. Human Brain Mapping, 2019, 40, 2967-2980.	3.6	26
88	Neural mechanisms of vibrotactile categorization. Human Brain Mapping, 2019, 40, 3078-3090.	3.6	11
89	Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. Human Brain Mapping, 2019, 40, 2771-2786.	3.6	76
90	Primate Amygdala Neurons Simulate Decision Processes of Social Partners. Cell, 2019, 177, 986-998.e15.	28.9	75

#	Article	IF	CITATIONS
91	Feed-forward information and zero-lag synchronization in the sensory thalamocortical circuit are modulated during stimulus perception. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7513-7522.	7.1	24
92	Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science Advances, 2019, 5, eaat7603.	10.3	296
93	Does Bilingualism Alter Lexical Structure? Response to Oppenheim, Wu, and Thierry (2018). Cognitive Science, 2019, 43, e12707.	1.7	7
94	Whole-brain modeling of neuroimaging data. , 2019, , 139-143.		1
95	Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 2019, 5, eaat7854.	10.3	192
96	Portraits of communication in neuronal networks. Nature Reviews Neuroscience, 2019, 20, 117-127.	10.2	126
97	Traces of statistical learning in the brain's functional connectivity after artificial language exposure. Neuropsychologia, 2019, 124, 246-253.	1.6	0
98	Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 2019, 184, 335-348.	4.2	23
99	Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model. NeuroImage, 2019, 184, 609-620.	4.2	19
100	Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics. Springer Series on Bio- and Neurosystems, 2019, , 27-45.	0.2	7
101	Imaging Connectomics and the Understanding of Brain Diseases. Advances in Experimental Medicine and Biology, 2019, 1192, 139-158.	1.6	0
102	Scale-freeness or partial synchronization in neural mass phase oscillator networks: Pick one of two?. NeuroImage, 2018, 180, 428-441.	4.2	13
103	Increased methylation at an unexplored glucocorticoid responsive element within exon 1D of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. European Neuropsychopharmacology, 2018, 28, 579-588.	0.7	44
104	The dynamics of human cognition: Increasing global integration coupled with decreasing segregation found using iEEG. NeuroImage, 2018, 172, 492-505.	4.2	16
105	Computational Models of Dysconnectivity in Large-Scale Resting-State Networks. , 2018, , 87-116.		2
106	Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance. NeuroImage, 2018, 171, 40-54.	4.2	14
107	Distinct criticality of phase and amplitude dynamics in the resting brain. NeuroImage, 2018, 180, 442-447.	4.2	30
108	Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. Cerebral Cortex. 2018. 28. 2948-2958.	2.9	31

#	Article	IF	CITATIONS
109	Effective Connectivity in Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 187-197.	1.5	42
110	Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 2018, 180, 534-546.	4.2	57
111	Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics. Neuroscientist, 2018, 24, 277-293.	3.5	74
112	Taskâ€related effective connectivity reveals that the cortical rich club gates cortexâ€wide communication. Human Brain Mapping, 2018, 39, 1246-1262.	3.6	31
113	Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. NeuroImage, 2018, 169, 46-56.	4.2	83
114	Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics. Neuron, 2018, 100, 1446-1459.e6.	8.1	118
115	Whole-Brain Multimodal Neuroimaging Model Using Serotonin Receptor Maps Explains Non-linear Functional Effects of LSD. Current Biology, 2018, 28, 3065-3074.e6.	3.9	159
116	Common neural signatures of psychedelics: Frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. Progress in Brain Research, 2018, 242, 97-120.	1.4	41
117	Resting-State Functional Connectivity Magnetic Resonance Imaging and Outcome After Acute Stroke. Stroke, 2018, 49, 2353-2360.	2.0	61
118	Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. NeuroImage, 2018, 178, 238-254.	4.2	41
119	Inferring multi-scale neural mechanisms with brain network modelling. ELife, 2018, 7, .	6.0	137
120	Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain. PLoS Biology, 2018, 16, e2002580.	5.6	13
121	Source-reconstruction of the sensorimotor network from resting-state macaque electrocorticography. NeuroImage, 2018, 181, 347-358.	4.2	9
122	Detection of recurrent activation patterns across focal seizures: Application to seizure onset zone identification. Clinical Neurophysiology, 2017, 128, 977-985.	1.5	14
123	Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160283.	3.4	95
124	Metastability in Senescence. Trends in Cognitive Sciences, 2017, 21, 509-521.	7.8	60
125	Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain, 2017, 140, 1068-1085.	7.6	77
126	Hierarchy of Information Processing in the Brain: A Novel â€~Intrinsic Ignition' Framework. Neuron, 2017, 94. 961-968.	8.1	91

#	Article	IF	CITATIONS
127	Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. NeuroImage, 2017, 160, 84-96.	4.2	319
128	Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data. NeuroImage, 2017, 152, 538-550.	4.2	165
129	Effect of Field Spread on Resting-State Magneto Encephalography Functional Network Analysis: A Computational Modeling Study. Brain Connectivity, 2017, 7, 541-557.	1.7	12
130	A whole-brain computational modeling approach to explain the alterations in resting-state functional connectivity during progression of Alzheimer's disease. NeuroImage: Clinical, 2017, 16, 343-354.	2.7	73
131	Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson's disease. Scientific Reports, 2017, 7, 9882.	3.3	79
132	Time-Resolved Resting-State Functional Magnetic Resonance Imaging Analysis: Current Status, Challenges, and New Directions. Brain Connectivity, 2017, 7, 465-481.	1.7	84
133	Resting state networks in empirical and simulated dynamic functional connectivity. NeuroImage, 2017, 159, 388-402.	4.2	33
134	The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports, 2017, 7, 3095.	3.3	356
135	Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Scientific Reports, 2017, 7, 5135.	3.3	257
136	Visual stimulation quenches global alpha range activity in awake primate V4: a case study. Neurophotonics, 2017, 4, 031222.	3.3	1
137	Increased Stability and Breakdown of Brain Effective Connectivity During Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling. Scientific Reports, 2017, 7, 4634.	3.3	90
138	Resting-state fMRI correlations: From link-wise unreliability to whole brain stability. NeuroImage, 2017, 157, 250-262.	4.2	73
139	Do Bilinguals Automatically Activate Their Native Language When They Are Not Using It?. Cognitive Science, 2017, 41, 1629-1644.	1.7	87
140	Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. NeuroImage, 2017, 146, 561-574.	4.2	52
141	The most relevant human brain regions for functional connectivity: Evidence for a dynamical workspace of binding nodes from whole-brain computational modelling. NeuroImage, 2017, 146, 197-210.	4.2	41
142	Neural Plasticity in Human Brain Connectivity. , 2017, , 527-546.		0
143	Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Scientific Reports, 2017, 7, 17661.	3.3	150
144	Reply: Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. Brain, 2017, 140, e72-e72.	7.6	1

#	Article	IF	CITATIONS
145	Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays. PLoS ONE, 2017, 12, e0187490.	2.5	4
146	Multiple Choice Neurodynamical Model of the Uncertain Option Task. PLoS Computational Biology, 2017, 13, e1005250.	3.2	4
147	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2. BMC Neuroscience, 2017, 18, .	1.9	7
148	Editorial: Metastable Dynamics of Neural Ensembles. Frontiers in Systems Neuroscience, 2017, 11, 99.	2.5	9
149	Spontaneous cortical activity is transiently poised close to criticality. PLoS Computational Biology, 2017, 13, e1005543.	3.2	88
150	Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep. ENeuro, 2017, 4, ENEURO.0106-17.2017.	1.9	47
151	Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study. Frontiers in Neural Circuits, 2016, 10, 51.	2.8	20
152	Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks. Frontiers in Systems Neuroscience, 2016, 10, 85.	2.5	53
153	Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. PLoS Computational Biology, 2016, 12, e1004762.	3.2	137
154	Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization. Scientific Reports, 2016, 6, 37384.	3.3	21
155	Recovery of directed intracortical connectivity from fMRI data. AIP Conference Proceedings, 2016, , .	0.4	0
156	Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs. Scientific Reports, 2016, 6, 38424.	3.3	87
157	Confidence through consensus: a neural mechanism for uncertainty monitoring. Scientific Reports, 2016, 6, 21830.	3.3	16
158	Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network. Current Biology, 2016, 26, 686-691.	3.9	86
159	Does the regulation of local excitation–inhibition balance aid in recovery of functional connectivity? A computational account. NeuroImage, 2016, 136, 57-67.	4.2	32
160	Neural correlates of metacognition: A critical perspective on current tasks. Neuroscience and Biobehavioral Reviews, 2016, 71, 167-175.	6.1	14
161	Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Human Brain Mapping, 2016, 37, 2918-2930.	3.6	186
162	Non-reward neural mechanisms in the orbitofrontal cortex. Cortex, 2016, 83, 27-38.	2.4	14

#	Article	IF	CITATIONS
163	Learning a New Selection Rule in Visual and Frontal Cortex. Cerebral Cortex, 2016, 26, 3611-3626.	2.9	1
164	Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective. Trends in Neurosciences, 2016, 39, 125-135.	8.6	187
165	Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction. Cortex, 2016, 77, 119-131.	2.4	19
166	Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?. NeuroImage, 2016, 127, 242-256.	4.2	530
167	Dynamic model of whole cortex reveals disassortative hub structure in the intracortical connectome. BMC Neuroscience, 2015, 16, P57.	1.9	0
168	Altered amygdalar restingâ€state connectivity in depression is explained by both genes and environment. Human Brain Mapping, 2015, 36, 3761-3776.	3.6	8
169	Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation. Frontiers in Behavioral Neuroscience, 2015, 9, 167.	2.0	18
170	Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction. Frontiers in Neuroinformatics, 2015, 9, 02.	2.5	48
171	Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling. PLoS Computational Biology, 2015, 11, e1004445.	3.2	76
172	The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex. PLoS Computational Biology, 2015, 11, e1004502.	3.2	4
173	Networks for memory, perception, and decision-making, and beyond to how the syntax for language might be implemented in the brain. Brain Research, 2015, 1621, 316-334.	2.2	26
174	Computational Modeling of Resting-State Activity Demonstrates Markers of Normalcy in Children with Prenatal or Perinatal Stroke. Journal of Neuroscience, 2015, 35, 8914-8924.	3.6	26
175	Stochastic cortical neurodynamics underlying the memory and cognitive changes in aging. Neurobiology of Learning and Memory, 2015, 118, 150-161.	1.9	30
176	Deconstructing multisensory enhancement in detection. Journal of Neurophysiology, 2015, 113, 1800-1818.	1.8	15
177	Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome. New Journal of Physics, 2015, 17, 015001.	2.9	24
178	Functional connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage, 2015, 105, 525-535.	4.2	463
179	Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity. PLoS Computational Biology, 2015, 11, e1004100.	3.2	216
180	Rethinking segregation and integration: contributions of whole-brain modelling. Nature Reviews Neuroscience, 2015, 16, 430-439.	10.2	483

#	Article	IF	CITATIONS
181	Task-driven intra- and interarea communications in primate cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4761-4766.	7.1	36
182	Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials. NeuroImage, 2015, 114, 185-198.	4.2	69
183	The Rediscovery of Slowness: Exploring the Timing of Cognition. Trends in Cognitive Sciences, 2015, 19, 616-628.	7.8	98
184	Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex. NeuroImage, 2015, 106, 328-339.	4.2	44
185	Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model. PLoS Computational Biology, 2015, 11, e1004547.	3.2	29
186	Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease. PLoS ONE, 2014, 9, e86496.	2.5	95
187	Cortico-cortical communication dynamics. Frontiers in Systems Neuroscience, 2014, 8, 19.	2.5	25
188	Tracing evolution of spatio-temporal dynamics of the cerebral cortex: cortico-cortical communication dynamics. Frontiers in Systems Neuroscience, 2014, 8, 76.	2.5	6
189	The Influence of Spatiotemporal Structure of Noisy Stimuli in Decision Making. PLoS Computational Biology, 2014, 10, e1003492.	3.2	13
190	Structure-Function Discrepancy: Inhomogeneity and Delays in Synchronized Neural Networks. PLoS Computational Biology, 2014, 10, e1003736.	3.2	36
191	†lf you are good, I get better': the role of social hierarchy in perceptual decision-making. Social Cognitive and Affective Neuroscience, 2014, 9, 1489-1497.	3.0	26
192	Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders. Neuron, 2014, 84, 892-905.	8.1	345
193	Rich club organization supports a diverse set of functional network configurations. NeuroImage, 2014, 96, 174-182.	4.2	115
194	How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest. NeuroImage, 2014, 87, 383-394.	4.2	50
195	Exploring the network dynamics underlying brain activity during rest. Progress in Neurobiology, 2014, 114, 102-131.	5.7	309
196	Using the Virtual Brain to Reveal the Role of Oscillations and Plasticity in Shaping Brain's Dynamical Landscape. Brain Connectivity, 2014, 4, 791-811.	1.7	47
197	Intra-cortical propagation of EEG alpha oscillations. NeuroImage, 2014, 103, 444-453.	4.2	56
198	Role of external stimulation in shaping evoked activity in a macroscopic model of cortex. BMC Neuroscience, 2014, 15, .	1.9	0

#	Article	IF	CITATIONS
199	Exploring mechanisms of spontaneous functional connectivity in MEG: How delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. NeuroImage, 2014, 90, 423-435.	4.2	287
200	Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural Modeling. Journal of Neuroscience, 2014, 34, 7910-7916.	3.6	138
201	Modeling Resting-State Functional Networks When the Cortex Falls Asleep: Local and Global Changes. Cerebral Cortex, 2014, 24, 3180-3194.	2.9	65
202	How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics. Journal of Neuroscience, 2014, 34, 7886-7898.	3.6	303
203	Spontaneous Activity, Models of. , 2014, , 1-5.		0
204	Multiscale Brain Connectivity. , 2014, , 1-3.		0
205	Modeling Alpha-Band Functional Connectivity for MEG Resting State Data: Oscillations and Delays in a Spiking Neuron Model. BMC Neuroscience, 2013, 14, .	1.9	0
206	Disrupted connectivity in schizophrenia: modelling the impact of structural connectivity changes on the dynamics of spontaneous functional networks. BMC Neuroscience, 2013, 14, .	1.9	1
207	A model of perceptual discrimination under sequential sensory evidence. BMC Neuroscience, 2013, 14, .	1.9	0
208	The effects of time delays on synchronization properties in a network of neural mass models. BMC Neuroscience, 2013, 14, .	1.9	0
209	Variability and information content in auditory cortex spike trains during an interval-discrimination task. Journal of Neurophysiology, 2013, 110, 2163-2174.	1.8	10
210	Brain mechanisms for perceptual and reward-related decision-making. Progress in Neurobiology, 2013, 103, 194-213.	5.7	133
211	Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences, 2013, 36, 268-274.	8.6	321
212	Neural Variability in Premotor Cortex Is Modulated by Trial History and Predicts Behavioral Performance. Neuron, 2013, 78, 249-255.	8.1	80
213	Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging. Neurolmage, 2013, 80, 318-329.	4.2	81
214	Spontaneous Brain Activity Predicts Learning Ability of Foreign Sounds. Journal of Neuroscience, 2013, 33, 9295-9305.	3.6	85
215	Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations. Journal of Neuroscience, 2013, 33, 11239-11252.	3.6	476
216	Coherent delta-band oscillations between cortical areas correlate with decision making. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15085-15090.	7.1	127

#	Article	IF	CITATIONS
217	Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos, 2013, 23, 046111.	2.5	60
218	Stimulus-dependent variability and noise correlations in cortical MT neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13162-13167.	7.1	121
219	A Common Neurodynamical Mechanism Could Mediate Externally Induced and Intrinsically Generated Transitions in Visual Awareness. PLoS ONE, 2013, 8, e53833.	2.5	9
220	Complexity Reduction of Rate-Equations Models for Two-Choice Decision-Making. PLoS ONE, 2013, 8, e80820.	2.5	3
221	Multi-stable perception balances stability and sensitivity. Frontiers in Computational Neuroscience, 2013, 7, 17.	2.1	45
222	Holding Multiple Items in Short Term Memory: A Neural Mechanism. PLoS ONE, 2013, 8, e61078.	2.5	41
223	Network Bursting Dynamics in Excitatory Cortical Neuron Cultures Results from the Combination of Different Adaptive Mechanism. PLoS ONE, 2013, 8, e75824.	2.5	36
224	Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction. PLoS Computational Biology, 2012, 8, e1002395.	3.2	109
225	Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors. Journal of Neuroscience, 2012, 32, 3366-3375.	3.6	605
226	Functional Graph Alterations in Schizophrenia: A Result from a Global Anatomic Decoupling?. Pharmacopsychiatry, 2012, 45, S57-S64.	3.3	36
227	Learning selective top-down control enhances performance in a visual categorization task. Journal of Neurophysiology, 2012, 108, 3124-3137.	1.8	9
228	Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron, 2012, 74, 924-935.	8.1	176
229	Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex. Neuron, 2012, 74, 1139.	8.1	3
230	Theory and Simulation in Neuroscience. Science, 2012, 338, 60-65.	12.6	141
231	Structural connectivity allows for multi-threading during rest: The structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing. NeuroImage, 2012, 60, 2274-2284.	4.2	27
232	Modeling the outcome of structural disconnection on resting-state functional connectivity. NeuroImage, 2012, 62, 1342-1353.	4.2	169
233	Balanced Input Allows Optimal Encoding in a Stochastic Binary Neural Network Model: An Analytical Study. PLoS ONE, 2012, 7, e30723.	2.5	4
234	A Multiple-Choice Task with Changes of Mind. PLoS ONE, 2012, 7, e43131.	2.5	19

#	Article	IF	CITATIONS
235	Perception and self-organized instability. Frontiers in Computational Neuroscience, 2012, 6, 44.	2.1	133
236	Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Frontiers in Computational Neuroscience, 2012, 6, 64.	2.1	29
237	How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Frontiers in Computational Neuroscience, 2012, 6, 68.	2.1	116
238	Communication before coherence. European Journal of Neuroscience, 2012, 36, 2689-2709.	2.6	18
239	Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network. PLoS ONE, 2012, 7, e42719.	2.5	23
240	Role of local network oscillations in resting-state functional connectivity. NeuroImage, 2011, 57, 130-139.	4.2	467
241	The Dynamical Balance of the Brain at Rest. Neuroscientist, 2011, 17, 107-123.	3.5	282
242	Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 2011, 12, 43-56.	10.2	1,497
243	The Timing of Vision – How Neural Processing Links to Different Temporal Dynamics. Frontiers in Psychology, 2011, 2, 151.	2.1	10
244	Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition. Frontiers in Human Neuroscience, 2011, 5, 145.	2.0	22
245	Prediction of Decisions from Noise in the Brain before the Evidence is Provided. Frontiers in Neuroscience, 2011, 5, 33.	2.8	25
246	Slow Modulation of Ongoing Discharge in the Auditory Cortex during an Interval-Discrimination Task. Frontiers in Integrative Neuroscience, 2011, 5, 60.	2.1	10
247	Bridging the gap between physiology and behavior: Evidence from the sSoTS model of human visual attention Psychological Review, 2011, 118, 3-41.	3.8	21
248	Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. European Journal of Neuroscience, 2011, 34, 146-157.	2.6	71
249	Perceptual learning with perceptions. Cognitive Neurodynamics, 2011, 5, 31-43.	4.0	2
250	Computational mechanism of postponed decisions. BMC Neuroscience, 2011, 12, .	1.9	0
251	Simulated functional networks in health and schizophrenia: a graph theoretical approach. BMC Neuroscience, 2011, 12, .	1.9	3
252	Neurodynamical model of confidence decision-making in LIP. BMC Neuroscience, 2011, 12, .	1.9	0

#	Article	IF	CITATIONS
253	A computational neuroscience approach to schizophrenia and its onset. Neuroscience and Biobehavioral Reviews, 2011, 35, 1644-1653.	6.1	50
254	The Role of Rhythmic Neural Synchronization in Rest and Task Conditions. Frontiers in Human Neuroscience, 2011, 5, 4.	2.0	39
255	Neuronal Adaptation Effects in Decision Making. Journal of Neuroscience, 2011, 31, 234-246.	3.6	26
256	Neural and computational mechanisms of postponed decisions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11626-11631.	7.1	19
257	Changes of Mind in an Attractor Network of Decision-Making. PLoS Computational Biology, 2011, 7, e1002086.	3.2	51
258	Noise in Attractor Networks in the Brain Produced by Graded Firing Rate Representations. PLoS ONE, 2011, 6, e23630.	2.5	15
259	Confidence-Related Decision Making. Journal of Neurophysiology, 2010, 104, 539-547.	1.8	70
260	Synaptic dynamics and decision making. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7545-7549.	7.1	67
261	Decision-Making, Errors, and Confidence in the Brain. Journal of Neurophysiology, 2010, 104, 2359-2374.	1.8	105
262	Optimal Information Transfer in the Cortex through Synchronization. PLoS Computational Biology, 2010, 6, e1000934.	3.2	144
263	Audiovisual Matching in Speech and Nonspeech Sounds: A Neurodynamical Model. Journal of Cognitive Neuroscience, 2010, 22, 240-247.	2.3	3
264	The role of multi-area interactions for the computation of apparent motion. NeuroImage, 2010, 51, 1018-1026.	4.2	13
265	Computational models of the brain: From structure to function. NeuroImage, 2010, 52, 727-730.	4.2	39
266	Choice, difficulty, and confidence in the brain. NeuroImage, 2010, 53, 694-706.	4.2	127
267	A neuroinspired cognitive behavioral control architecture for visually driven mobile robotics. , 2009, , .		0
268	Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10302-10307.	7.1	681
269	Lexical Plasticity in Early Bilinguals Does Not Alter Phoneme Categories: II. Experimental Evidence. Journal of Cognitive Neuroscience, 2009, 21, 2343-2357.	2.3	25
270	RATE AND GAMMA MODULATION IN ATTENTIONAL TASKS. New Mathematics and Natural Computation, 2009, 05, 135-142.	0.7	0

#	Article	IF	CITATIONS
271	Correction for Deco et al., Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12207-12208.	7.1	17
272	Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics. PLoS Computational Biology, 2009, 5, e1000587.	3.2	44
273	The encoding of alternatives in multiple-choice decision making. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10308-10313.	7.1	62
274	Attention – oscillations and neuropharmacology. European Journal of Neuroscience, 2009, 30, 347-354.	2.6	74
275	Multisensory contributions to the perception of vibrotactile events. Behavioural Brain Research, 2009, 196, 145-154.	2.2	62
276	Stochastic dynamics as a principle of brain function. Progress in Neurobiology, 2009, 88, 1-16.	5.7	248
277	Stochastic Neural Dynamics as a Principle of Perception. , 2009, , 247-262.		3
278	Simulating posterior parietal damage in a biologically plausible framework: Neuropsychological tests of the search over time and space model. Cognitive Neuropsychology, 2009, 26, 343-390.	1.1	9
279	Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme. Journal of Neuroscience, 2009, 29, 13484-13493.	3.6	153
280	Stochastic Dynamics in the Brain and Probabilistic Decision-Making. Lecture Notes in Computer Science, 2009, , 31-50.	1.3	2
281	Computational significance of transient dynamics in cortical networks. European Journal of Neuroscience, 2008, 27, 217-227.	2.6	80
282	Neurodynamical amplification of perceptual signals via system-size resonance. Physica D: Nonlinear Phenomena, 2008, 237, 316-323.	2.8	6
283	Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nature Reviews Neuroscience, 2008, 9, 696-709.	10.2	333
284	Computational significance of transient dynamics in cortical networks. European Journal of Neuroscience, 2008, 27, 790-790.	2.6	1
285	An attractor hypothesis of obsessive–compulsive disorder. European Journal of Neuroscience, 2008, 28, 782-793.	2.6	70
286	Nonlinear diffusion models of detection. BMC Neuroscience, 2008, 9, .	1.9	0
287	The role of fluctuations in perception. Trends in Neurosciences, 2008, 31, 591-598.	8.6	43

#	Article	IF	CITATIONS
289	The Neuronal Basis of Attention: Rate versus Synchronization Modulation. Journal of Neuroscience, 2008, 28, 7679-7686.	3.6	69
290	The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields. PLoS Computational Biology, 2008, 4, e1000092.	3.2	832
291	Lexical Plasticity in Early Bilinguals Does Not Alter Phoneme Categories: I. Neurodynamical Modeling. Journal of Cognitive Neuroscience, 2008, 20, 76-94.	2.3	9
292	Neurodynamics of the Prefrontal Cortex during Conditional Visuomotor Associations. Journal of Cognitive Neuroscience, 2008, 20, 421-431.	2.3	13
293	Neuronal and Cortical Dynamical Mechanisms Underlying Brain Functions. , 2008, , 219-240.		1
294	A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks. PLoS ONE, 2008, 3, e2534.	2.5	68
295	Neural Mechanisms of Visual Memory: A Neurocomputational Perspective. , 2008, , 247-290.		3
296	Weber's Law in Decision Making: Integrating Behavioral Data in Humans with a Neurophysiological Model. Journal of Neuroscience, 2007, 27, 11192-11200.	3.6	63
297	A Dynamical Systems Hypothesis of Schizophrenia. PLoS Computational Biology, 2007, 3, e228.	3.2	137
298	Statistical Fluctuations in Attractor Networks Related to Schizophrenia. Pharmacopsychiatry, 2007, 40, S78-S84.	3.3	20
299	Extended method of moments for deterministic analysis of stochastic multistable neurodynamical systems. Physical Review E, 2007, 75, 031913.	2.1	12
300	Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20073-20077.	7.1	36
301	Attention and Spatial Resolution: A Theoretical and Experimental Study of Visual Search in Hierarchical Patterns. Perception, 2007, 36, 335-354.	1.2	12
302	Decision-making mechanisms in the brain. AIP Conference Proceedings, 2007, , .	0.4	0
303	The symptoms of schizophrenia related to the stability of attractor networks. BMC Neuroscience, 2007, 8, .	1.9	0
304	Interactions between higher and lower visual areas improve shape selectivity of higher level neurons—Explaining crowding phenomena. Brain Research, 2007, 1157, 167-176.	2.2	46
305	Suppressive effects in visual search: A neurocomputational analysis of preview search. Neurocomputing, 2007, 70, 1925-1931.	5.9	7
306	The neuronal dynamics underlying cognitive flexibility in set shifting tasks. Journal of Computational Neuroscience, 2007, 23, 313-331.	1.0	31

#	Article	IF	CITATIONS
307	Deterministic analysis of stochastic bifurcations in multi-stable neurodynamical systems. Biological Cybernetics, 2007, 96, 487-496.	1.3	24
308	The neurodynamics underlying attentional control in set shifting tasks. Cognitive Neurodynamics, 2007, 1, 249-259.	4.0	9
309	The Spiking Search over Time and Space Model (sSoTS): Simulating Dual Task Experiments and the Temporal Dynamics of Preview Search. Lecture Notes in Computer Science, 2007, , 338-351.	1.3	0
310	Computational Neuroscience and Cognitive Brain Functions. , 2007, , 153-167.		0
311	Biased Competition and Cooperation: A Mechanism of Mammalian Visual Recognition?. , 2007, , 187-203.		Ο
312	Decisionâ€making and Weber's law: a neurophysiological model. European Journal of Neuroscience, 2006, 24, 901-916.	2.6	143
313	Attention in natural scenes: Neurophysiological and computational bases. Neural Networks, 2006, 19, 1383-1394.	5.9	36
314	Learning to Attend: Modeling the Shaping of Selectivity in Infero-temporal Cortex in a Categorization Task. Biological Cybernetics, 2006, 94, 351-365.	1.3	21
315	A computational model of visual marking using an inter-connected network of spiking neurons: The spiking search over time & space model (sSoTS). Journal of Physiology (Paris), 2006, 100, 110-124.	2.1	15
316	Reward-biased probabilistic decision-making: Mean-field predictions and spiking simulations. Neurocomputing, 2006, 69, 1175-1178.	5.9	5
317	Neurodynamical approach to the picture–word interference effect. Neurocomputing, 2006, 69, 1317-1321.	5.9	2
318	Detecting event-related time-dependent directional couplings. New Journal of Physics, 2006, 8, 6-6.	2.9	31
319	The neurodynamics of visual search. Visual Cognition, 2006, 14, 1006-1024.	1.6	14
320	Cognitive flexibility and decision-making in a model of conditional visuomotor associations. European Journal of Neuroscience, 2005, 22, 2927-2936.	2.6	21
321	Neural dynamics of cross-modal and cross-temporal associations. Experimental Brain Research, 2005, 166, 325-336.	1.5	17
322	Neurodynamics of Biased Competition and Cooperation for Attention: A Model With Spiking Neurons. Journal of Neurophysiology, 2005, 94, 295-313.	1.8	215
323	Sequential Memory: A Putative Neural and Synaptic Dynamical Mechanism. Journal of Cognitive Neuroscience, 2005, 17, 294-307.	2.3	56
324	Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility. NeuroImage, 2005, 26, 454-470.	4.2	27

#	Article	IF	CITATIONS
325	Attention, short-term memory, and action selection: A unifying theory. Progress in Neurobiology, 2005, 76, 236-256.	5.7	293
326	A Neurodynamical Model of Visual Attention. , 2005, , 593-599.		10
327	The Role of Short-Term Memory in Visual Attention. , 2005, , 610-617.		4
328	The Computational Neuroscience of Visual Cognition: Attention, Memory and Reward. Lecture Notes in Computer Science, 2005, , 100-117.	1.3	4
329	"What―and "Where―in Visual Working Memory: A Computational Neurodynamical Perspective for Integrating fMRI and Single-Neuron Data. Journal of Cognitive Neuroscience, 2004, 16, 683-701.	2.3	113
330	Synaptic and Spiking Dynamics underlying Reward Reversal in the Orbitofrontal Cortex. Cerebral Cortex, 2004, 15, 15-30.	2.9	102
331	Cooperation and biased competition model can explain attentional filtering in the prefrontal cortex. European Journal of Neuroscience, 2004, 19, 1969-1977.	2.6	29
332	The role of early visual cortex in visual integration: a neural model of recurrent interaction. European Journal of Neuroscience, 2004, 20, 1089-1100.	2.6	62
333	Modular biased-competition and cooperation: a candidate mechanism for selective working memory. European Journal of Neuroscience, 2004, 20, 2789-2803.	2.6	8
334	Integrating fMRI and single-cell data of visual working memory. Neurocomputing, 2004, 58-60, 729-737.	5.9	9
335	A biased competition based neurodynamical model of visual neglect. Medical Engineering and Physics, 2004, 26, 733-743.	1.7	21
336	A Neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 2004, 44, 621-642.	1.4	265
337	Feature-based attention in human visual cortex: simulation of fMRI data. NeuroImage, 2004, 21, 36-45.	4.2	31
338	Systems-Level Neuronal Modeling of Visual Attentional Mechanisms. Artificial Intelligence Review, 2003, 20, 143-160.	15.7	3
339	Large-Scale Computational Modeling of Genetic Regulatory Networks. Artificial Intelligence Review, 2003, 20, 75-93.	15.7	16
340	Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience, 2003, 18, 2374-2390.	2.6	176
341	Large-scale Neural Model for Visual Attention: Integration of Experimental Single-cell and fMRI Data. Cerebral Cortex, 2002, 12, 339-348.	2.9	94
342	The time course of selective visual attention: theory and experiments. Vision Research, 2002, 42, 2925-2945.	1.4	73

#	Article	IF	CITATIONS
343	A model of binocular rivalry based on competition in IT. Neurocomputing, 2002, 44-46, 503-507.	5.9	36
344	A neurodynamical model to simulate neural activities in visual attention experiments. Neurocomputing, 2002, 44-46, 759-767.	5.9	1
345	A unified model of spatial and object attention based on inter-cortical biased competition. Neurocomputing, 2002, 44-46, 775-781.	5.9	54
346	A computational neuroscience account of visual neglect. Neurocomputing, 2002, 44-46, 811-816.	5.9	11
347	Speech recognition with spiking neurons and dynamic synapses: a model motivated by the human auditory pathway. Neurocomputing, 2002, 44-46, 937-942.	5.9	13
348	Object-based visual neglect: a computational hypothesis. European Journal of Neuroscience, 2002, 16, 1994-2000.	2.6	34
349	A Neurodynamical Theory of Visual Attention: Comparisons with fMRI- and Single-Neuron Data. Lecture Notes in Computer Science, 2002, , 3-8.	1.3	2
350	Top-down selective visual attention: A neurodynamical approach. Visual Cognition, 2001, 8, 118-139.	1.6	82
351	Temporal clustering with spiking neurons and dynamic synapses: towards technological applications. Neural Networks, 2001, 14, 275-285.	5.9	9
352	A neurodynamical model for selective visual attention using oscillators. Neural Networks, 2001, 14, 981-990.	5.9	32
353	Investigating the underlying Markovian dynamics of ECG rhythms by information flow. Chaos, Solitons and Fractals, 2001, 12, 2877-2888.	5.1	2
354	A neurodynamical model of visual attention: feedback enhancement of spatial resolution in a hierarchical system. Journal of Computational Neuroscience, 2001, 10, 231-253.	1.0	56
355	Predictive Coding in the Visual Cortex by a Recurrent Network with Gabor Receptive Fields. Neural Processing Letters, 2001, 14, 107-114.	3.2	3
356	Learning spatio-temporal stimuli with networks of spiking neurons and dynamic synapses. Neurocomputing, 2001, 38-40, 935-943.	5.9	1
357	Selective attention in visual search: A neural network of phase oscillators. Neurocomputing, 2001, 38-40, 1151-1160.	5.9	3
358	Biased Competition Mechanisms for Visual Attention in a Multimodular Neurodynamical System. Lecture Notes in Computer Science, 2001, , 114-126.	1.3	14
359	Simultaneous Parallel Processing of Object and Position by Temporal Correlation. Lecture Notes in Computer Science, 2001, , 64-71.	1.3	0
360	A Neuro-Cognitive Visual System for Object Recognition Based on Testing of Interactive Attentional Top – down Hypotheses. Perception, 2000, 29, 1249-1264.	1.2	20

#	Article	IF	CITATIONS
361	Neurodynamical mechanism of binding and selective attention for visual search. Neurocomputing, 2000, 32-33, 693-699.	5.9	4
362	Neural Coding: Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies. Neural Computation, 2000, 12, 2621-2653.	2.2	127
363	A hierarchical neural system with attentional top–down enhancement of the spatial resolution for object recognition. Vision Research, 2000, 40, 2845-2859.	1.4	67
364	Rest EEG Hidden Dynamics as a Discriminant for Brain Tumour Classification. Perspectives in Neural Computing, 2000, , 169-180.	0.1	0
365	Brain tumor classification based on EEG hidden dynamics. Intelligent Data Analysis, 1999, 3, 287-306.	0.9	12
366	Spatiotemporal Coding in the Cortex: Information Flow-Based Learning in Spiking Neural Networks. Neural Computation, 1999, 11, 919-934.	2.2	13
367	Brain tumor classification based on EEG hidden dynamics. Intelligent Data Analysis, 1999, 3, 287-306.	0.9	14
368	A characterization of HRV's nonlinear hidden dynamics by means of Markov models. IEEE Transactions on Biomedical Engineering, 1999, 46, 978-986.	4.2	22
369	A Neuronal Model of Binding and Selective Attention for Visual Search. Perspectives in Neural Computing, 1999, , 262-271.	0.1	2
370	Dynamics extraction in multivariate biomedical time series. Biological Cybernetics, 1998, 79, 15-27.	1.3	29
371	Stochastic resonance in the mutual information between input and output spike trains of noisy central neurons. Physica D: Nonlinear Phenomena, 1998, 117, 276-282.	2.8	45
372	Information Maximization and Independent Component Analysis: Is There a Difference?. Neural Computation, 1998, 10, 2085-2101.	2.2	27
373	The coding of information by spiking neurons: an analytical study. Network: Computation in Neural Systems, 1998, 9, 303-317.	3.6	10
374	The coding of information by spiking neurons: an analytical study. Network: Computation in Neural Systems, 1998, 9, 303-317.	3.6	2
375	Information dynamics and neural techniques for data analysis. Neural Network Systems Techniques and Applications, 1998, , 305-351.	0.0	0
376	Dynamical Analysis of Time Series by Statistical Tests. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 2629-2652.	1.7	6
377	Determining the Information Flow of Dynamical Systems from Continuous Probability Distributions. Physical Review Letters, 1997, 78, 2345-2348.	7.8	8
378	Information Transmission and Temporal Code in Central Spiking Neurons. Physical Review Letters, 1997, 79, 4697-4700.	7.8	18

#	Article	IF	CITATIONS
379	Information Flow in Chaotic Symbolic Dynamics for Finite and Infinitesimal Resolution. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 97-105.	1.7	6
380	Testing nonlinear Markovian hypotheses in dynamical systems. Physica D: Nonlinear Phenomena, 1997, 104, 61-74.	2.8	10
381	Two Strategies to Avoid Overfitting in Feedforward Networks. Neural Networks, 1997, 10, 505-516.	5.9	110
382	Non-parametric Data Selection for Neural Learning in Non-stationary Time Series. Neural Networks, 1997, 10, 401-407.	5.9	14
383	Nonlinear independent component analysis and multivariate time series analysis. Physica D: Nonlinear Phenomena, 1997, 108, 335-349.	2.8	8
384	Identification of deterministic chaos by an information-theoretic measure of the sensitive dependence on the initial conditions. Physica D: Nonlinear Phenomena, 1997, 110, 173-181.	2.8	9
385	Finite automata-models for the investigation of dynamical systems. Information Processing Letters, 1997, 63, 137-141.	0.6	14
386	An information theory based learning paradigm for linear feature extraction. Neurocomputing, 1996, 12, 203-221.	5.9	8
387	Exploring the intrinsic information loss in single-humped maps by refining multi-symbol partitions. Physica D: Nonlinear Phenomena, 1996, 94, 57-64.	2.8	17
388	Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps. Neural Computation, 1996, 8, 260-269.	2.2	113
389	An Information-Theoretic Approach to Neural Computing. Perspectives in Neural Computing, 1996, , .	0.1	188
390	Information Theory Based Regularizing Methods. Perspectives in Neural Computing, 1996, , 225-241.	0.1	0
391	Nonlinear Feature Extraction: Deterministic Neural Networks. Perspectives in Neural Computing, 1996, , 135-166.	0.1	Ο
392	Statistical Physics Theory of Supervised Learning and Generalization. Perspectives in Neural Computing, 1996, , 187-217.	0.1	1
393	Nonparametric data selection for improvement of parametric neural learning: A cumulant-surrogate method. Lecture Notes in Computer Science, 1996, , 121-126.	1.3	Ο
394	Preliminaries of Information Theory and Neural Networks. Perspectives in Neural Computing, 1996, , 7-37.	0.1	0
395	Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures. Neural Networks, 1995, 8, 525-535.	5.9	99
396	Neural learning of chaotic dynamics. Neural Processing Letters, 1995, 2, 23-26.	3.2	11

#	Article	IF	CITATIONS
397	Continuous Boltzmann machine with rotor neurons. Neural Networks, 1995, 8, 375-385.	5.9	8
398	Statistical physics theory of query learning by an ensemble of higher-order neural networks. Physical Review E, 1995, 52, 1953-1957.	2.1	2
399	Learning time series evolution by unsupervised extraction of correlations. Physical Review E, 1995, 51, 1780-1790.	2.1	18
400	Statistical-ensemble theory of redundancy reduction and the duality between unsupervised and supervised neural learning. Physical Review E, 1995, 52, 6580-6587.	2.1	9
401	Information theory and local learning rules in a self-organizing network of Ising spins. Physical Review E, 1995, 52, 2860-2871.	2.1	2
402	Do Symmetric Eikonal and Continuum Distorted Wave models satisfy the correct boundary conditions?. Physica Scripta, 1995, 51, 334-338.	2.5	3
403	Decorrelated Hebbian Learning for Clustering and Function Approximation. Neural Computation, 1995, 7, 338-348.	2.2	7
404	Unsupervised Mutual Information Criterion for Elimination of Overtraining in Supervised Multilayer Networks. Neural Computation, 1995, 7, 86-107.	2.2	72
405	Redundancy reduction with information-preserving nonlinear maps. Network: Computation in Neural Systems, 1995, 6, 61-72.	3.6	11
406	Unsupervised learning for Boltzman Machines. Network: Computation in Neural Systems, 1995, 6, 437-448.	3.6	8
407	Matrix continuum distorted-wave approximation for electron capture. Physical Review A, 1993, 47, 3769-3774.	2.5	5
408	Coarse Coding Resource-Allocating Network. Neural Computation, 1993, 5, 105-114.	2.2	11
409	Double electron capture of He2+from He at high velocity. Journal of Physics B: Atomic, Molecular and Optical Physics, 1991, 24, L133-L138.	1.5	41
410	Angular distribution of electron-positron pairs produced in ion-ion collisions at relativistic energies. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 143, 387-392.	2.1	6
411	K-shell ionisation in heavy ion collisions at relativistic energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 2091-2096.	1.5	3
412	Two-center effects in relativistic radiative electron capture. Physical Review A, 1989, 39, 5451-5454.	2.5	3
413	Capture from the vacuum in ion-ion collisions at relativistic energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 3709-3716.	1.5	7
414	Pair production with electron capture in relativistic heavy-ion collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1043-1050.	1.5	12

#	Article	IF	CITATIONS
415	Asymptotic behaviour of distorted-wave models for ionisation at relativistic energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1989, 22, 1357-1364.	1.5	14
416	Ionization of heavy targets by impact of relativistic projectiles. Nuclear Instruments & Methods in Physics Research B, 1988, 35, 100-102.	1.4	3
417	Introduction of short-range interactions in continuum distorted-wave theory of electron capture for ion-atom collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1403-1410.	1.5	14
418	Electron capture in collisions between bare heavy ions at ultra relativistic impact energies. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1229-1235.	1.5	11
419	Creation of ee+pairs in the target field followed by e-capture in the target. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1861-1866.	1.5	7
420	Electron capture in the target following e–e3+pair production in the simultaneous presence of the fields of the projectile and of the target. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, L299-L302.	1.5	8
421	Modelling on the very large-scale connectome. Journal of Physics Complexity, 0, , .	2.2	3
422	Computational Neuroscience for Cognitive Brain Functions. , 0, , 197-215.		0