Ramesh Giri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699314/publications.pdf

Version: 2024-02-01

56	8,146	36	58
papers	citations	h-index	g-index
69	69	69	4789
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ni-Catalyzed Regio- and Stereoselective Alkylarylation of Unactivated Alkenes in \hat{l}^3 , \hat{l} -Alkenylketimines. ACS Catalysis, 2022, 12, 7262-7268.	11.2	12
2	Nickelâ€Catalyzed Regioselective Alkenylarylation of γ,δâ€Alkenyl Ketones via Carbonyl Coordination. Angewandte Chemie - International Edition, 2021, 60, 19092-19096.	13.8	17
3	Nickelâ€Catalyzed Regioselective Alkenylarylation of γ,δâ€Alkenyl Ketones via Carbonyl Coordination. Angewandte Chemie, 2021, 133, 19240-19244.	2.0	O
4	Transition Metal (Ni, Cu, Pd)-Catalyzed Alkene Dicarbofunctionalization Reactions. Accounts of Chemical Research, 2021, 54, 3415-3437.	15.6	148
5	Niâ€Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX ₂ **. Angewandte Chemie - International Edition, 2021, 60, 22977-22982.	13.8	19
6	Niâ€Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 **. Angewandte Chemie, 2021, 133, 23159.	2.0	4
7	Ni-Catalyzed Regioselective 1,2-Dialkylation of Alkenes Enabled by the Formation of Two C(sp ³)–C(sp ³) Bonds. Journal of the American Chemical Society, 2020, 142, 20930-20936.	13.7	50
8	Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chemical Science, 2020, 11, 9757-9774.	7.4	96
9	K ₂ CO ₃ -Catalyzed Synthesis of 2,5-Dialkyl-4,6,7-tricyano-Decorated Indoles via Carbon–Carbon Bond Cleavage. Organic Letters, 2020, 22, 3268-3272.	4.6	14
10	Nickelâ€Catalyzed αâ€Carbonylalkylarylation of Vinylarenes: Expedient Access to γ,γâ€Diarylcarbonyl and Aryltetralone Derivatives. Angewandte Chemie, 2020, 132, 8124-8128.	2.0	10
11	Nickelâ€Catalyzed αâ€Carbonylalkylarylation of Vinylarenes: Expedient Access to γ,γâ€Diarylcarbonyl and Aryltetralone Derivatives. Angewandte Chemie - International Edition, 2020, 59, 8047-8051.	13.8	43
12	An Expedient Route to 9â€Arylmethylanthracene Derivatives via Tandem Niâ€Catalyzed Alkene Dicarbofunctionalization and Acidâ€Promoted Cyclizationâ€Aromatization. Israel Journal of Chemistry, 2020, 60, 424-428.	2.3	4
13	Ni(I)-Catalyzed \hat{I}^2 , \hat{I} -Vinylarylation of \hat{I}^3 , \hat{I} -Alkenyl \hat{I} ±-Cyanocarboxylic Esters via Contraction of Transient Nickellacycles. ACS Catalysis, 2019, 9, 10887-10893.	11.2	40
14	Concise Synthesis of a Potential 5-Lipoxygenase Activating Protein (FLAP) Inhibitor and Its Analogs through Late-Stage Alkene Dicarbofunctionalization. Organic Process Research and Development, 2019, 23, 1686-1694.	2.7	19
15	Isolation and characterization of (Ar)(F)B(OR)2Cs and (PN)CuAr complexes. Involvement of cationic copper(I) species during transmetalation of arylboron reagents with (PN)CuF. Tetrahedron, 2019, 75, 4081-4085.	1.9	1
16	Ni(I)-Catalyzed -Vinylarylation of -Alkenyl -Cyanocarboxylic Esters via Contraction of Transient Nickellacycles. ACS Catalysis, 2019, 9, 10887-10893.	11.2	7
17	Transition Metal atalyzed Dicarbofunctionalization of Unactivated Olefins. Chemical Record, 2018, 18, 1314-1340.	5.8	340
18	Strategies toward Dicarbofunctionalization of Unactivated Olefins by Combined Heck Carbometalation and Cross-Coupling. Journal of Organic Chemistry, 2018, 83, 3013-3022.	3.2	255

#	Article	IF	CITATIONS
19	Ni-Catalyzed Regioselective Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling and Application to the Concise Synthesis of Lignan Natural Products. Journal of Organic Chemistry, 2018, 83, 2920-2936.	3.2	56
20	Mechanism of the Ullmann Biaryl Ether Synthesis Catalyzed by Complexes of Anionic Ligands: Evidence for the Reaction of Iodoarenes with Ligated Anionic Cu ^I Intermediates. Journal of the American Chemical Society, 2018, 140, 793-806.	13.7	83
21	Synergistic Bimetallic Ni/Ag and Ni/Cu Catalysis for Regioselective \hat{i}^3 , \hat{i} -Diarylation of Alkenyl Ketimines: Addressing \hat{i}^2 -H Elimination by in Situ Generation of Cationic Ni(II) Catalysts. Journal of the American Chemical Society, 2018, 140, 15586-15590.	13.7	123
22	Ni-Catalyzed Regioselective Alkylarylation of Vinylarenes via C(sp ³)â€"C(sp ^{>3}) Bond Formation and Mechanistic Studies. Journal of the American Chemical Society, 2018, 140, 9801-9805.	13.7	149
23	Fully Synthetic Approach toward Transition Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 3802-3806.	5.1	9
24	Ni-Catalyzed Regioselective \hat{i}^2 , \hat{i} -Diarylation of Unactivated Olefins in Ketimines via Ligand-Enabled Contraction of Transient Nickellacycles: Rapid Access to Remotely Diarylated Ketones. Journal of the American Chemical Society, 2018, 140, 7782-7786.	13.7	142
25	Ni-catalysed regioselective 1,2-diarylation of unactivated olefins by stabilizing Heck intermediates as pyridylsilyl-coordinated transient metallacycles. Chemical Science, 2018, 9, 904-909.	7.4	98
26	Copper-Catalyzed Dicarbofunctionalization of Unactivated Olefins by Tandem Cyclization/Cross-Coupling. Journal of the American Chemical Society, 2017, 139, 5700-5703.	13.7	92
27	Pd-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Unactivated Olefins by a Heck Reaction/Enolate Cyclization Cascade. Organic Letters, 2017, 19, 2154-2157.	4.6	25
28	Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles. Journal of the American Chemical Society, 2017, 139, 10653-10656.	13.7	192
29	The copper-catalysed Suzuki–Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation. Chemical Communications, 2016, 52, 11072-11075.	4.1	32
30	Copper-Catalyzed Negishi Coupling of Diarylzinc Reagents with Aryl Iodides. Synthesis, 2016, 48, 504-511.	2.3	13
31	General Copper-Catalyzed Coupling of Alkyl-, Aryl-, and Alkynylaluminum Reagents with Organohalides. Journal of Organic Chemistry, 2016, 81, 787-802.	3.2	42
32	Ligandâ€Free Copperâ€Catalyzed Negishi Coupling of Alkylâ€, Arylâ€, and Alkynylzinc Reagents with Heteroaryl lodides. Angewandte Chemie, 2015, 127, 8354-8358.	2.0	11
33	Ligandâ€Free Copperâ€Catalyzed Negishi Coupling of Alkylâ€, Arylâ€, and Alkynylzinc Reagents with Heteroaryl lodides. Angewandte Chemie - International Edition, 2015, 54, 8236-8240.	13.8	59
34	Copper-catalyzed arylation of alkyl halides with arylaluminum reagents. Beilstein Journal of Organic Chemistry, 2015, 11, 2400-2407.	2.2	6
35	Copper-catalysed cross-coupling of arylzirconium reagents with aryl and heteroaryl iodides. Chemical Communications, 2015, 51, 4009-4012.	4.1	14
36	Copper-catalysed cross-couplings of arylboronate esters with aryl and heteroaryl iodides and bromides. Organic Chemistry Frontiers, 2015, 2, 649-653.	4.5	28

#	Article	IF	Citations
37	Copper-Catalyzed Cross-Couplings of Organometallic Reagents with and without Assistance from PN Ligands. Synlett, 2015, 26, 709-715.	1.8	10
38	Copper-catalysed cross-coupling: an untapped potential. Organic and Biomolecular Chemistry, 2015, 13, 4816-4827.	2.8	148
39	Copper-Catalyzed Cross-Coupling of Aryl- and Heteroaryltriethoxysilanes with Aryl and Heteroaryl lodides and Bromides. Synthesis, 2014, 46, 1933-1937.	2.3	14
40	Palladiumâ€Catalysed, Directed CH Coupling with Organometallics. Advanced Synthesis and Catalysis, 2014, 356, 1395-1411.	4.3	123
41	Copperâ€Catalyzed Coupling of Triaryl―and Trialkylindium Reagents with Aryl lodides and Bromides through Consecutive Transmetalations. Angewandte Chemie - International Edition, 2014, 53, 11620-11624.	13.8	35
42	Copper-Catalyzed Suzuki–Miyaura Coupling of Arylboronate Esters: Transmetalation with (PN)CuF and Identification of Intermediates. Organic Letters, 2014, 16, 1264-1267.	4.6	126
43	Copper-Catalyzed Hiyama Coupling of (Hetero)aryltriethoxysilanes with (Hetero)aryl lodides. Organic Letters, 2013, 15, 5378-5381.	4.6	82
44	Understanding Reactivity and Stereoselectivity in Palladium-Catalyzed Diastereoselective sp ³ C–H Bond Activation: Intermediate Characterization and Computational Studies. Journal of the American Chemical Society, 2012, 134, 14118-14126.	13.7	115
45	Copper(I) Phenoxide Complexes in the Etherification of Aryl Halides. Angewandte Chemie - International Edition, 2010, 49, 2185-2189.	13.8	129
46	Cu(I)â^Amido Complexes in the Ullmann Reaction: Reactions of Cu(I)â^Amido Complexes with Iodoarenes with and without Autocatalysis by Cul. Journal of the American Chemical Society, 2010, 132, 15860-15863.	13.7	157
47	Synthetic Applications of Pd(II)-Catalyzed Câ^'H Carboxylation and Mechanistic Insights: Expedient Routes to Anthranilic Acids, Oxazolinones, and Quinazolinones. Journal of the American Chemical Society, 2010, 132, 686-693.	13.7	295
48	Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 2009, 38, 3242.	38.1	1,498
49	Pd(II)-Catalyzed Cross-Coupling of sp ³ Câ^'H Bonds with sp ² and sp ³ Boronic Acids Using Air as the Oxidant. Journal of the American Chemical Society, 2008, 130, 7190-7191.	13.7	461
50	Synthesis of 1,2- and 1,3-Dicarboxylic Acids via Pd(II)-Catalyzed Carboxylation of Aryl and Vinyl Câ^'H Bonds. Journal of the American Chemical Society, 2008, 130, 14082-14083.	13.7	360
51	Dehydrogenation of Inert Alkyl Groups via Remote Câ^'H Activation: Converting a Propyl Group into a Ï€-Allylic Complex. Organometallics, 2008, 27, 1667-1670.	2.3	129
52	Palladium-Catalyzed Methylation and Arylation of sp2and sp3Câ^'H Bonds in Simple Carboxylic Acids. Journal of the American Chemical Society, 2007, 129, 3510-3511.	13.7	715
53	Ïf-Chelation-directed C–H functionalizations using Pd(ii) and Cu(ii) catalysts: regioselectivity, stereoselectivity and catalytic turnover. Organic and Biomolecular Chemistry, 2006, 4, 4041-4047.	2.8	301
54	Convertinggem-Dimethyl Groups into Cyclopropanes via Pd-Catalyzed Sequential Câ^'H Activation and Radical Cyclization. Organic Letters, 2006, 8, 5685-5688.	4.6	66

#	Article	IF	CITATIONS
55	Palladium-Catalyzed Asymmetric Iodination of Unactivated C?H Bonds under Mild Conditions. Angewandte Chemie - International Edition, 2005, 44, 2112-2115.	13.8	464
56	Pd-Catalyzed Stereoselective Oxidation of Methyl Groups by Inexpensive Oxidants under Mild Conditions: A Dual Role for Carboxylic Anhydrides in Catalytic CH Bond Oxidation. Angewandte Chemie - International Edition, 2005, 44, 7420-7424.	13.8	409