Oliver L Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6699164/publications.pdf Version: 2024-02-01

		2427	1634
317	52,329	97	215
papers	citations	h-index	g-index
353	353	353	37064
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Very Low Stocks and Inputs of Necromass in Wind-affected Tropical Forests. Ecosystems, 2022, 25, 488-503.	3.4	5
2	Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Global Change Biology, 2022, 28, 1414-1432.	9.5	16
3	Variation of nonâ€structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Functional Ecology, 2022, 36, 341-355.	3.6	9
4	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
5	Primary modes of tree mortality in southwestern Amazon forests. Trees, Forests and People, 2022, 7, 100180.	1.9	0
6	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
7	Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters, 2022, 17, 014047.	5.2	21
8	Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nature Ecology and Evolution, 2022, 6, 315-323.	7.8	15
9	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	11.0	48
10	Climate and crown damage drive tree mortality in southern Amazonian edge forests. Journal of Ecology, 2022, 110, 876-888.	4.0	12
11	Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 2022, 13, 880.	12.8	55
12	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	3.3	7
13	Relationships between species richness and ecosystem services in Amazonian forests strongly influenced by biogeographical strata and forest types. Scientific Reports, 2022, 12, 5960.	3.3	1
14	Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests. Nature Sustainability, 2022, 5, 479-487.	23.7	6
15	Making forest data fair and open. Nature Ecology and Evolution, 2022, 6, 656-658.	7.8	18
16	Forest Fire History in Amazonia Inferred From Intensive Soil Charcoal Sampling and Radiocarbon Dating. Frontiers in Forests and Global Change, 2022, 5, .	2.3	6
17	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	7.8	8
18	Tropical tree mortality has increased with rising atmospheric water stress. Nature, 2022, 608, 528-533.	27.8	74

#	Article	IF	CITATIONS
19	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
20	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
21	From plots to policy: How to ensure longâ€ŧerm forest plot data supports environmental management in intact tropical forest landscapes. Plants People Planet, 2021, 3, 229-237.	3.3	6
22	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
23	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
24	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	4.1	42
25	Dynamics and multiâ€annual fate of atmospherically deposited nitrogen in montane tropical forests. Global Change Biology, 2021, 27, 2076-2087.	9.5	16
26	Multiple environmental factors regulate the large-scale patterns of plant water use efficiency and nitrogen availability across China's forests. Environmental Research Letters, 2021, 16, 034026.	5.2	4
27	Confronting ethical challenges in long-term research programs in the tropics. Biological Conservation, 2021, 255, 108933.	4.1	5
28	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	12.8	59
29	Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 2021, 12, 2138.	12.8	26
30	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
31	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
32	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
33	Leaf traits from stomata to morphology are associated with climatic and edaphic variables for dominant tropical forest evergreen oaks. Journal of Plant Ecology, 2021, 14, 1115-1127.	2.3	11
34	Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environmental Research Letters, 2021, 16, 074048.	5.2	15
35	High aboveground carbon stock of African tropical montane forests. Nature, 2021, 596, 536-542.	27.8	65
36	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71

#	Article	IF	CITATIONS
37	Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Scientific Reports, 2021, 11, 1388.	3.3	32
38	Functional diversity and regeneration traits of tree communities in the Amazon-Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151952.	1.2	4
39	Ârboles del Santuario Histórico de Machu Picchu: Monitoreo de diversidad y carbono a largo plazo. Q'euÂña, 2021, 12, 21-43.	0.0	0
40	Chapter 4: Amazonian ecosystems and their ecological functions. , 2021, , .		3
41	Chapter 6A: The Amazon Carbon Budget. , 2021, , .		3
42	Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodiversity and Conservation, 2020, 29, 1519-1536.	2.6	36
43	Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil, 2020, 450, 65-79.	3.7	12
44	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
45	Regional Mapping and Spatial Distribution Analysis of Canopy Palms in an Amazon Forest Using Deep Learning and VHR Images. Remote Sensing, 2020, 12, 2225.	4.0	24
46	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
47	Evaluating the potential of fullâ€waveform lidar for mapping panâ€tropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	5.8	31
48	The impact of long dry periods on the aboveground biomass in a tropical forest: 20Âyears of monitoring. Carbon Balance and Management, 2020, 15, 12.	3.2	11
49	The potential for REDD+ to reduce forest degradation in Vietnam. Environmental Research Letters, 2020, 15, 074025.	5.2	7
50	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
51	Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest. Plant Ecology, 2020, 221, 733-747.	1.6	10
52	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
53	Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, .	2.3	21
54	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57

#	Article	IF	CITATIONS
55	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
56	Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 2020, 57, 1730-1740.	4.0	22
57	Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nature Communications, 2020, 11, 3346.	12.8	61
58	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
59	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
60	Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 2020, 6, 53-88.	4.9	36
61	Assessment of Bias in Pan-Tropical Biomass Predictions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	36
62	Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 2020, 108, 2070-2082.	4.0	27
63	Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network. PLoS ONE, 2020, 15, e0229448.	2.5	32
64	Logging intensity drives variability in carbon stocks in lowland forests in Vietnam. Forest Ecology and Management, 2020, 460, 117863.	3.2	11
65	Title is missing!. , 2020, 15, e0229448.		0
66	Title is missing!. , 2020, 15, e0229448.		0
67	Title is missing!. , 2020, 15, e0229448.		Ο
68	Title is missing!. , 2020, 15, e0229448.		0
69	Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 2019, 25, 3609-3624.	9.5	78
70	The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surveys in Geophysics, 2019, 40, 979-999.	4.6	106
71	Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecology Letters, 2019, 22, 1608-1619.	6.4	9
72	The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 2019, 6, 198.	5.3	44

#	Article	IF	CITATIONS
73	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
74	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	1.3	18
75	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
76	The persistence of carbon in the African forest understory. Nature Plants, 2019, 5, 133-140.	9.3	41
77	Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.	3.2	23
78	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
79	Comparative phylogeography of five widespread tree species: Insights into the history of western Amazonia. Ecology and Evolution, 2019, 9, 7333-7345.	1.9	13
80	Extensive 21st entury Woody Encroachment in South America's Savanna. Geophysical Research Letters, 2019, 46, 6594-6603.	4.0	62
81	Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics, 2019, 40, 913-935.	4.6	54
82	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	27.8	371
83	Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sensing, 2019, 11, 817.	4.0	30
84	Securing the climate benefits of stable forests. Climate Policy, 2019, 19, 845-860.	5.1	31
85	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	4.6	91
86	Using the Uâ€net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sensing in Ecology and Conservation, 2019, 5, 360-375.	4.3	134
87	Drier tropical forests are susceptible to functional changes in response to a longâ€ŧerm drought. Ecology Letters, 2019, 22, 855-865.	6.4	75
88	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	1.8	19
89	Scaling issues of neutral theory reveal violations of ecological equivalence for dominant Amazonian tree species. Ecology Letters, 2019, 22, 1072-1082.	6.4	7
90	Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. Journal of Ecology, 2019, 107, 696-710.	4.0	25

#	Article	IF	CITATIONS
91	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
92	EL EL SUMIDERO DE CARBONO EN LOS BOSQUES PRIMARIOS AMAZÓNICOS ES UNA OPORTUNIDAD PARA LOGRAR LA SOSTENIBILIDAD DE SU CONSERVACIÓN. Folia Amazónica, 2019, 27, 101-109.	0.1	8
93	Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. Forest Ecology and Management, 2018, 414, 64-73.	3.2	35
94	Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 2018, 21, 989-1000.	6.4	215
95	Differences in leaf thermoregulation and water use strategies between three coâ€occurring Atlantic forest tree species. Plant, Cell and Environment, 2018, 41, 1618-1631.	5.7	92
96	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	7.3	341
97	Fates of atmospheric deposited nitrogen in an Asian tropical primary forest. Forest Ecology and Management, 2018, 411, 213-222.	3.2	29
98	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	12.8	485
99	Recent progress in understanding climate thresholds. Progress in Physical Geography, 2018, 42, 24-60.	3.2	18
100	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
101	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
102	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	2.4	12
103	High nitrogen isotope fractionation of nitrate during denitrification in four forest soils and its implications for denitrification rate estimates. Science of the Total Environment, 2018, 633, 1078-1088.	8.0	25
104	Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional betaâ€diversity. Ecography, 2018, 41, 1256-1269.	4.5	35
105	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
106	Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 362-377.	11.1	91
107	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	4.0	41
108	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78

#	Article	IF	CITATIONS
109	Effects of long-term increased N deposition on tropical montane forest soil N2 and N2O emissions. Soil Biology and Biochemistry, 2018, 126, 194-203.	8.8	40
110	Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and "Cerrado―biomes. Revista Brasileira De Botanica, 2018, 41, 611-619.	1.3	19
111	Environmental drivers of forest structure and stem turnover across Venezuelan tropical forests. PLoS ONE, 2018, 13, e0198489.	2.5	22
112	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	3.3	47
113	Idiosyncratic soil-tree species associations and their relationships with drought in a monodominant Amazon forest. Acta Oecologica, 2018, 91, 127-136.	1.1	5
114	Seasonal drought limits tree species across the Neotropics. Ecography, 2017, 40, 618-629.	4.5	143
115	Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytologist, 2017, 214, 1064-1077.	7.3	30
116	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	3.3	251
117	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	3.2	98
118	Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists. Trends in Ecology and Evolution, 2017, 32, 258-267.	8.7	52
119	Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management, 2017, 391, 75-85.	3.2	16
120	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	12.6	443
121	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 2017, 20, 730-740.	6.4	100
122	Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 2017, 194, 77-88.	11.0	142
123	Biogeographic distributions of neotropical trees reflect their directly measured drought tolerances. Scientific Reports, 2017, 7, 8334.	3.3	51
124	Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?. Plant Ecology, 2017, 218, 1047-1062.	1.6	5
125	Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 2017, 306, 237-243.	5.1	29
126	The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 2017, 214, 1019-1032.	7.3	126

#	Article	IF	CITATIONS
127	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	7.3	89
128	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	12.8	116
129	Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 2017, 12, e0171072.	2.5	67
130	Land cover change and carbon emissions over 100Âyears in an <scp>A</scp> frican biodiversity hotspot. Global Change Biology, 2016, 22, 2787-2800.	9.5	52
131	An integrated panâ€ŧropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	9.5	469
132	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	1.3	14
133	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
134	Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. Journal of Ecology, 2016, 104, 497-506.	4.0	15
135	Low Phylogenetic Beta Diversity and Geographic Neoâ€endemism in Amazonian Whiteâ€sand Forests. Biotropica, 2016, 48, 34-46.	1.6	52
136	Recent Changes in Amazon Forest Biomass and Dynamics. Ecological Studies, 2016, , 191-224.	1.2	11
137	Aboveground biomass estimation in tropical forests at single tree level with ALS data. , 2016, , .		1
138	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
139	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
140	SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment, 2016, 175, 138-147.	11.0	118
141	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	4.0	71
142	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	7.1	161
143	Floristics and biogeography of vegetation in seasonally dry tropical regions. International Forestry Review, 2015, 17, 10-32.	0.6	50
144	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72

#	Article	IF	CITATIONS
145	Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 2015, 42, 4654-4662.	4.0	87
146	Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochemical Cycles, 2015, 29, 1384-1399.	4.9	107
147	Ecology of Floodplain <i>Campos de Murundus</i> Savanna in Southern Amazonia. International Journal of Plant Sciences, 2015, 176, 670-681.	1.3	16
148	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
149	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	3.3	63
150	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
151	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	9.5	146
152	Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 2015, 519, 78-82.	27.8	464
153	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	12.8	214
154	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
155	Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sensing of Environment, 2015, 169, 93-101.	11.0	92
156	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
157	Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia. Plant Ecology and Diversity, 2015, 8, 229-241.	2.4	20
158	Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests. PLoS ONE, 2015, 10, e0126594.	2.5	38
159	Dinámica, biomasa aérea y composición florÃstica en parcelas permanentes Reserva Nacional Tambopata, Madre de Dios, Perú. Revista Peruana De Biologia, 2014, 21, 235-242.	0.3	6
160	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	12.8	169
161	The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru). Plant Ecology and Diversity, 2014, 7, 71-83.	2.4	25
162	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248

#	Article	IF	CITATIONS
163	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	3.6	87
164	The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014, 7, 85-105.	2.4	82
165	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
166	Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology and Diversity, 2014, 7, 231-240.	2.4	9
167	The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest. Oecologia, 2014, 174, 295-306.	2.0	38
168	Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 2014, 320, 30-38.	3.2	75
169	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
170	Tropical forest wood production: a cross ontinental comparison. Journal of Ecology, 2014, 102, 1025-1037.	4.0	77
171	The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 2014, 24, 680-698.	3.8	156
172	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 2014, 506, 76-80.	27.8	398
173	<i>Ficus insipida</i> subsp. <i>insipida</i> (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. Journal of Biogeography, 2014, 41, 1697-1709.	3.0	25
174	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
175	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	10.4	208
176	Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1820-1830.	3.0	11
177	Evaluating the tropical forest carbon sink. Global Change Biology, 2014, 20, 2039-2041.	9.5	39
178	Shifting dynamics of climate-functional groups in old-growth Amazonian forests. Plant Ecology and Diversity, 2014, 7, 267-279.	2.4	18
179	Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology and Diversity, 2014, 7, 215-229.	2.4	45
180	Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance and Management, 2014, 9, 2.	3.2	26

#	Article	IF	CITATIONS
181	Recent changes in tropical forest biomass and dynamics. , 2014, , 77-108.		10
182	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	2.4	104
183	The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 593-622.	8.3	616
184	Hyperdominance in the Amazonian Tree Flora. Science, 2013, 342, 1243092.	12.6	873
185	Amazon palm biomass and allometry. Forest Ecology and Management, 2013, 310, 994-1004.	3.2	114
186	Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests. Biotropica, 2013, 45, 682-692.	1.6	98
187	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	12.9	358
188	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
189	Detecting trends in tree growth: not so simple. Trends in Plant Science, 2013, 18, 11-17.	8.8	222
190	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264
191	Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 2013, 40, 1729-1733.	4.0	284
192	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	3.3	487
193	Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 2012, 9, 775-801.	3.3	45
194	Tightening up on tree carbon estimates. Nature, 2012, 491, 527-527.	27.8	9
195	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	3.3	78
196	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
197	Dripâ€ŧips are Associated with Intensity of Precipitation in the Amazon Rain Forest. Biotropica, 2012, 44, 728-737.	1.6	25
198	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	5.8	235

#	Article	IF	CITATIONS
199	What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 2012, 21, 1179-1190.	5.8	187
200	Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World. PLoS ONE, 2012, 7, e44795.	2.5	27
201	ForestPlots.net – managing permanent plot information across the tropics. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 95-103.	0.3	5
202	A Large and Persistent Carbon Sink in the World's Forests. Science, 2011, 333, 988-993.	12.6	5,393
203	Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology, 2011, 151, 765-773.	4.8	446
204	The 2010 Amazon Drought. Science, 2011, 331, 554-554.	12.6	912
205	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	3.3	396
206	Alien and native plants show contrasting responses to climate and land use in Europe. Global Ecology and Biogeography, 2011, 20, 367-379.	5.8	36
207	Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 2011, 20, 744-754.	5.8	195
208	Global species-energy relationship in forest plots: role of abundance, temperature and species climatic tolerances. Global Ecology and Biogeography, 2011, 20, 842-856.	5.8	65
209	Geological control of floristic composition in Amazonian forests. Journal of Biogeography, 2011, 38, 2136-2149.	3.0	167
210	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
211	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 2011, 86, 457-474.	10.4	39
212	ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science, 2011, 22, 610-613.	2.2	157
213	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	4.0	71
214	The response of South American tropical forests to recent atmospheric changes. , 2011, , 343-358.		2
215	The high value of logged tropical forests: lessons from northern Borneo. Biodiversity and Conservation, 2010, 19, 985-997.	2.6	253
216	Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytologist, 2010, 187, 579-591.	7.3	293

#	Article	IF	CITATIONS
217	Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 2010, 187, 733-750.	7.3	174
218	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	7.3	487
219	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	5.8	32
220	Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 2010, 7, 43-55.	3.3	250
221	Calibrating the liana crown occupancy index in Amazonian forests. Forest Ecology and Management, 2010, 260, 549-555.	3.2	20
222	After trees die: quantities and determinants of necromass across Amazonia. Biogeosciences, 2009, 6, 1615-1626.	3.3	50
223	Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 2009, 6, 2677-2708.	3.3	295
224	Liana infestation impacts tree growth in a lowland tropical moist forest. Biogeosciences, 2009, 6, 2217-2226.	3.3	85
225	Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.	3.3	221
226	Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 2009, 6, 1577-1590.	3.3	25
227	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	3.3	31
228	Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences, 2009, 6, 2719-2731.	3.3	49
229	Branch xylem density variations across the Amazon Basin. Biogeosciences, 2009, 6, 545-568.	3.3	84
230	Do species traits determine patterns of wood production in Amazonian forests?. Biogeosciences, 2009, 6, 297-307.	3.3	81
231	Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences, 2009, 6, 1883-1902.	3.3	40
232	Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. Geophysical Monograph Series, 2009, , 373-387.	0.1	16
233	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	9.5	74
234	Environmental effects on Neotropical liana species richness. Journal of Biogeography, 2009, 36, 1561-1572.	3.0	39

#	Article	IF	CITATIONS
235	Increasing carbon storage in intact African tropical forests. Nature, 2009, 457, 1003-1006.	27.8	816
236	How do trees die? Mode of death in northern Amazonia. Journal of Vegetation Science, 2009, 20, 260-268.	2.2	63
237	Disentangling regional and local tree diversity in the Amazon. Ecography, 2009, 32, 46-54.	4.5	61
238	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
239	The production, storage, and flow of carbon in Amazonian forests. Geophysical Monograph Series, 2009, , 355-372.	0.1	19
240	Impacts of selective logging on tree diversity across a rainforest landscape: the importance of spatial scale. Landscape Ecology, 2008, 23, 915.	4.2	52
241	Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests. Oecologia, 2008, 158, 521-534.	2.0	29
242	Growth and wood density predict tree mortality in Amazon forests. Journal of Ecology, 2008, 96, 281-292.	4.0	144
243	Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science, 2008, 19, 747-756.	2.2	63
244	Tree Community Change across 700 km of Lowland Amazonian Forest from the Andean Foothills to Brazil. Biotropica, 2008, 40, 525-535.	1.6	77
245	What controls liana success in Neotropical forests?. Global Ecology and Biogeography, 2008, 17, 372-383.	5.8	81
246	Floristic and functional affiliations of woody plants with climate in western Amazonia. Journal of Biogeography, 2008, 35, 939-950.	3.0	22
247	The changing Amazon forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1819-1827.	4.0	188
248	Wood density and stocks of coarse woody debris in a northwestern Amazonian landscape. Canadian Journal of Forest Research, 2008, 38, 795-805.	1.7	53
249	Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica, 2008, 8, 21-29.	1.0	82
250	A calibration method for the crown illumination index for assessing forest light environments. Forest Ecology and Management, 2007, 242, 431-437.	3.2	49
251	The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 2007, 16, 618-631.	5.8	186
252	Latitudinal patterns of range size and species richness of New World woody plants. Global Ecology and Biogeography, 2007, 16, 679-688.	5.8	53

#	Article	IF	CITATIONS
253	The odd man out? Might climate explain the lower tree αâ€diversity of African rain forests relative to Amazonian rain forests?. Journal of Ecology, 2007, 95, 1058-1071.	4.0	115
254	Drought, dispersal, and distribution in the inner tropics. Journal of Biogeography, 2007, 34, 1846-1847.	3.0	2
255	The RAINFOR database: monitoring forest biomass and dynamics. Journal of Vegetation Science, 2007, 18, 535-542.	2.2	94
256	Development and parameterization of a general forest gap dynamics simulator for the North-eastern Mediterranean Basin (GREek FOrest Species). Ecological Modelling, 2007, 204, 439-456.	2.5	20
257	Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia, 2007, 152, 495-504.	2.0	87
258	The response of South American tropical forests to contemporary atmospheric change. , 2007, , 317-332.		2
259	The RAINFOR database: monitoring forest biomass and dynamics. Journal of Vegetation Science, 2007, 18, 535.	2.2	5
260	Impacts of global atmospheric change on tropical forests. Trends in Ecology and Evolution, 2006, 21, 173-174.	8.7	27
261	Resilience of Southwestern Amazon Forests to Anthropogenic Edge Effects. Conservation Biology, 2006, 20, 1698-1710.	4.7	33
262	The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12, 1107-1138.	9.5	497
263	Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 2006, 443, 444-447.	27.8	593
264	New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest. Transactions of the Institute of British Geographers, 2005, 30, 477-499.	2.9	50
265	Local values for harvested forest plants in Madre de Dios, Peru: Towards a more contextualised interpretation of quantitative ethnobotanical data. Biodiversity and Conservation, 2005, 14, 45-79.	2.6	131
266	Species Loss and Aboveground Carbon Storage in a Tropical Forest. Science, 2005, 310, 1029-1031.	12.6	390
267	LARGE LIANAS AS HYPERDYNAMIC ELEMENTS OF THE TROPICAL FOREST CANOPY. Ecology, 2005, 86, 1250-1258.	3.2	154
268	Predicting the impacts of global environmental changes on tropical forests. , 2005, , 41-56.		1
269	Late twentieth-century patterns and trends in Amazon tree turnover. , 2005, , 107-128.		3
270	The prospects for tropical forests in the twenty-first-century atmosphere. , 2005, , 215-226.		1

16

#	Article	IF	CITATIONS
271	Late twentieth-century trends in the biomass of Amazonian forest plots. , 2005, , 129-142.		2
272	Late twentieth-century trends in the structure and dynamics of South American forests. , 2005, , 143-154.		0
273	Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 353-365.	4.0	405
274	Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 437-462.	4.0	213
275	The impact of global climate change on tropical forest biodiversity in Amazonia. Global Ecology and Biogeography, 2004, 13, 553-565.	5.8	104
276	Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 2004, 10, 545-562.	9.5	633
277	Variation in potential for isoprene emissions among Neotropical forest sites. Global Change Biology, 2004, 10, 630-650.	9.5	96
278	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	9.5	436
279	Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 2004, 92, 929-944.	4.0	181
280	Extinction risk from climate change. Nature, 2004, 427, 145-148.	27.8	5,985
281	Uncertainty in predictions of extinction risk/Effects of changes in climate and land use/Climate change and extinction risk (reply). Nature, 2004, 430, 34-34.	27.8	47
282	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407.	4.0	370
283	Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 549-555.	4.0	119
284	Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 421-436.	4.0	250
285	The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate, and Boreal forest biomes. , 2004, , 109-149.		9
286	A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation, 2003, 12, 2255-2277.	2.6	348
287	Habitat association among Amazonian tree species: a landscape-scale approach. Journal of Ecology, 2003, 91, 757-775.	4.0	276
288	Efficient plot-based floristic assessment of tropical forests. Journal of Tropical Ecology, 2003, 19, 629-645.	1.1	122

#	Article	IF	CITATIONS
289	CHANGES IN GROWTH OF TROPICAL FORESTS: EVALUATING POTENTIAL BIASES. , 2002, 12, 576-587.		148
290	Increasing dominance of large lianas in Amazonian forests. Nature, 2002, 418, 770-774.	27.8	500
291	An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 2002, 13, 439-450.	2.2	285
292	A comparison of fineâ€scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography, 2000, 23, 349-359.	4.5	80
293	Allpahuayo: Floristics, Structure, and Dynamics of a High-Diversity Forest in Amazonian Peru. Annals of the Missouri Botanical Garden, 2000, 87, 499.	1.3	47
294	A comparison of fine-scale distribution patterns of four plant groups in an Amazonian rainforest. Ecography, 2000, 23, 349-359.	4.5	25
295	La Utilidad y Potencial Económica de las Plantas Escasas de los Estados Unidos: Un Resumen Estadistical. Economic Botany, 1998, 52, 57-67.	1.7	26
296	Tree Mortality and Collecting Botanical Vouchers in Tropical Forests1. Biotropica, 1998, 30, 298-305.	1.6	35
297	Changes in the Carbon Balance of Tropical Forests: Evidence from Long-Term Plots. , 1998, 282, 439-442.		724
298	Dynamics of Tropical Communities: 37th Symposium of the British Ecological Society ED. D.M. NEWBERY, H.H.T. PRINS AND N. BROWN ix + 635 pp., 23 × 16.5 × 4 cm, ISBN 0 632 04944 8 hardback, £60 London, UK: Blackwell Science, 1998. Environmental Conservation, 1998, 25, 369-371.).0D3	0
299	Species Richness, Tropical Forest Dynamics, and Sampling: Response to Sheil. Oikos, 1997, 79, 183.	2.7	42
300	Forest turnover, diversity and CO2. Trends in Ecology and Evolution, 1997, 12, 404.	8.7	40
301	Title is missing!. Biodiversity and Conservation, 1997, 6, 1179-1180.	2.6	0
302	The changing ecology of tropical forests. Biodiversity and Conservation, 1997, 6, 291-311.	2.6	72
303	Long-term environmental change in tropical forests: increasing tree turnover. Environmental Conservation, 1996, 23, 235-248.	1.3	100
304	A. K. Gentry 1996. A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa. University of Chicago Press, Chicago. 918 pp. ISBN (paper). Price £35.95. US\$45.00 Journal of Tropical Ecology, 1996, 12, 722-722.	1.1	1
305	Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation, 1995, 4, 56-90.	2.6	234
306	Response. Science, 1995, 268, 894-895.	12.6	18

#	Article	IF	CITATIONS
307	<i>Response</i> : Evaluating Turnover in Tropical Forests. Science, 1995, 268, 894-895.	12.6	2
308	<i>Response</i> : Evaluating Turnover in Tropical Forests. Science, 1995, 268, 894-895.	12.6	3
309	Increasing Turnover Through Time in Tropical Forests. Science, 1994, 263, 954-958.	12.6	453
310	Quantitative Ethnobotany and Amazonian Conservation. Conservation Biology, 1994, 8, 225-248.	4.7	371
311	Dynamics and species richness of tropical rain forests Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2805-2809.	7.1	381
312	The potential for harvesting fruits in tropical rainforests: new data from Amazonian Peru. Biodiversity and Conservation, 1993, 2, 18-38.	2.6	51
313	The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Economic Botany, 1993, 47, 15-32.	1.7	632
314	The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Economic Botany, 1993, 47, 33-43.	1.7	359
315	Using and Conserving the Rainforest. Conservation Biology, 1993, 7, 6-7.	4.7	1
316	The ethnobotany and economic botany of tropical vines. , 1992, , 427-476.		3
317	Notes on economic plants. Economic Botany, 1990, 44, 529-543.	1.7	2