Ian A Hope

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6697589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single Amino Acid Changes in the Ryanodine Receptor in the Human Population Have Effects In Vivo on Caenorhabditis elegans Neuro-Muscular Function. Frontiers in Genetics, 2020, 11, 37.	2.3	4
2	Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3: Genes, Genomes, Genetics, 2017, 7, 1451-1461.	1.8	13
3	Stressful environments can indirectly select for increased longevity. Ecology and Evolution, 2014, 4, 1176-1185.	1.9	18
4	The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis. BMC Genomics, 2013, 14, 249.	2.8	10
5	A simplified counter-selection recombineering protocol for creating fluorescent protein reporter constructs directly from C. elegans fosmid genomic clones. BMC Biotechnology, 2013, 13, 1.	3.3	98
6	The C aenorhabditis elegans homeobox gene cehâ€19 is required for MC motorneuron function. Genesis, 2013, 51, 163-178.	1.6	7
7	A regulatory cascade of three transcription factors in a single specific neuron, DVC, in Caenorhabditis elegans. Gene, 2012, 494, 73-84.	2.2	12
8	Expression Pattern Analysis of Regulatory Transcription Factors in Caenorhabditis elegans. Methods in Molecular Biology, 2012, 786, 21-50.	0.9	8
9	Gait Modulation in C. Elegans: It's Not a Choice, It's a Reflex!. Frontiers in Behavioral Neuroscience, 2011, 5, 10.	2.0	15
10	DAF-16 and Δ9 Desaturase Genes Promote Cold Tolerance in Long-Lived Caenorhabditis elegans age-1 Mutants. PLoS ONE, 2011, 6, e24550.	2.5	49
11	Distinct mechanisms for delimiting expression of four Caenorhabditis elegans transcription factor genes encoding activators or repressors. Molecular Genetics and Genomics, 2011, 286, 95-107.	2.1	1
12	Determination of the mobility of novel and established Caenorhabditis elegans sarcomeric proteins in vivo. European Journal of Cell Biology, 2010, 89, 437-448.	3.6	12
13	Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host. BMC Biotechnology, 2010, 10, 27.	3.3	18
14	DamID in <i>C. elegans</i> reveals longevityâ€associated targets of DAFâ€16/FoxO. Molecular Systems Biology, 2010, 6, 399.	7.2	122
15	The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mechanisms of Ageing and Development, 2009, 130, 762-770.	4.6	30
16	Forward locomotion of the nematode <i>C. elegans</i> is achieved through modulation of a single gait. HFSP Journal, 2009, 3, 186-193.	2.5	109
17	Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Briefings in Functional Genomics & Proteomics, 2008, 7, 175-183.	3.8	18
18	Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 2007, 25, 663-668.	17.5	286

Ian A Hope

#	Article	IF	CITATIONS
19	Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns. BMC Genomics, 2007, 8, 27.	2.8	120
20	A Gene-Centered C. elegans Protein-DNA Interaction Network. Cell, 2006, 125, 1193-1205.	28.9	224
21	Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. Nucleic Acids Research, 2006, 34, e72-e72.	14.5	60
22	A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biology, 2005, 6, R110.	9.6	175
23	A First Version of the Caenorhabditis elegans Promoterome. Genome Research, 2004, 14, 2169-2175.	5.5	155
24	Feasibility of Genome-Scale Construction of Promoter::Reporter Gene Fusions for Expression in Caenorhabditis elegans Using a MultiSite Gateway Recombination System. Genome Research, 2004, 14, 2070-2075.	5.5	40
25	Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Molecular Membrane Biology, 2004, 21, 247-259.	2.0	10
26	The forkhead gene family of Caenorhabditis elegans. Gene, 2003, 304, 43-55.	2.2	42
27	Gene expression markers for Caenorhabditis elegans vulval cells. Mechanisms of Development, 2002, 119, S203-S209.	1.7	64
28	Evidence Suggesting That a Fifth of Annotated Caenorhabditis elegans Genes May Be Pseudogenes. Genome Research, 2002, 12, 770-775.	5.5	76
29	Evidence Suggesting That a Fifth of Annotated Caenorhabditis elegans Genes May Be Pseudogenes. Genome Research, 2002, 12, 770-775.	5.5	2
30	Broadcast interference – functional genomics. Trends in Genetics, 2001, 17, 297-299.	6.7	17
31	RNAi surges on: application to cultured mammalian cells. Trends in Genetics, 2001, 17, 440.	6.7	6
32	Probing the biological roles of nucleoside transporters using <i>Caenorhabditis elegans</i> as a model organism. Biochemical Society Transactions, 2000, 28, A93-A93.	3.4	0
33	Complexity of Developmental Control: Analysis of Embryonic Cell Lineage Specification in Caenorhabditis elegans Using pes-1 as an Early Marker. Genetics, 1999, 151, 131-141.	2.9	11
34	Promoter trapping identifies real genes in C. elegans. Molecular Genetics and Genomics, 1998, 260, 300-308.	2.4	16
35	Characterisation of ZK643.3: a putative 7TM neuropeptide receptor. Biochemical Society Transactions, 1997, 25, 440S-440S.	3.4	0
36	The C. elegans expression pattern database: a beginning. Trends in Genetics, 1996, 12, 370-371.	6.7	21

Ian A Hope

#	Article	IF	CITATIONS
37	The C. elegans expression pattern database: a beginning. Trends in Genetics, 1996, 12, 370-371.	6.7	4
38	Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genetics, 1995, 11, 309-313.	21.4	56
39	Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping. Developmental Dynamics, 1993, 196, 124-132.	1.8	18
40	Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature, 1988, 333, 635-640.	27.8	347
41	Transcriptional Activation by Yeast GCN4, a Functional Homolog to the jun Oncoprotein. Cold Spring Harbor Symposia on Quantitative Biology, 1988, 53, 701-709.	1.1	6
42	Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast. Cell, 1986, 46, 885-894.	28.9	965
43	Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science, 1986, 234, 451-457.	12.6	390
44	Constitutive and Coordinately Regulated Transcription of Yeast Genes: Promoter Elements, Positive and Negative Regulatory Sites, and DNA Binding Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50, 489-503.	1.1	39
45	The gene for an exported antigen of the malaria parasitePlasmodium falciparumcloned and expressed inEscherichia coli. Nucleic Acids Research, 1985, 13, 369-379.	14.5	71
46	GCN4 protein, synthesize in vitro, binds HIS3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast. Cell, 1985, 43, 177-188.	28.9	540
47	Processing, polymorphism, and biological significance of P190, a major surface antigen of the erythrocytic forms of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1984, 11, 61-80.	1.1	91
48	Evidence for immunological cross-reaction between sporozoites and blood stages of a human malaria parasite. Nature, 1984, 308, 191-194.	27.8	71
49	Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature, 1984, 311, 379-382.	27.8	254