Yonatan Dubi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696682/publications.pdf Version: 2024-02-01

Υσνιάταν Πίιβι

#	Article	IF	CITATIONS
1	Distinguishing Thermal from Nonthermal ("Hotâ€) Carriers in Illuminated Molecular Junctions. Nano Letters, 2022, 22, 2127-2133.	9.1	10
2	Photothermal nonlinearity in plasmon-assisted photocatalysis. Nanoscale, 2022, 14, 5022-5032.	5.6	7
3	Distinguishing thermal from non-thermal contributions to plasmonic hydrodefluorination. Nature Catalysis, 2022, 5, 244-246.	34.4	13
4	Emergence and Dynamical Stability of a Charge Time-Crystal in a Current-Carrying Quantum Dot Simulator. Nano Letters, 2022, , .	9.1	6
5	Signatures of discrete time-crystallinity in transport through an open Fermionic chain. Communications Physics, 2022, 5, .	5.3	14
6	Do photosynthetic complexes use quantum coherence to increase their efficiency? Probably not. Science Advances, 2021, 7, .	10.3	19
7	Theory of "Hot―Photoluminescence from Drude Metals. ACS Nano, 2021, 15, 8724-8732.	14.6	15
8	Spinterface Origin for the Chirality-Induced Spin-Selectivity Effect. Journal of the American Chemical Society, 2021, 143, 14235-14241.	13.7	60
9	Recent developments in plasmon-assisted photocatalysis—A personal Perspective. Applied Physics Letters, 2020, 117, .	3.3	32
10	Environment-Assisted and Environment-Hampered Efficiency at Maximum Power in a Molecular Photocell. Journal of Physical Chemistry C, 2020, 124, 15115-15122.	3.1	1
11	Reply to the â€~Comment on "Thermal effects – an alternative mechanism for plasmon-assisted photocatalysisâ€â€™ by P. Jain, <i>Chem. Sci.</i> , 2020, 11 , DOI: 10.1039/D0SC02914A. Chemical Scier 2020, 11, 9024-9025.	n æ 4	7
12	Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis. Chemical Science, 2020, 11, 5017-5027.	7.4	135
13	Effects of disorder and interactions in environment assisted quantum transport. Physical Review Research, 2020, 2, .	3.6	21
14	Experimental practices required to isolate thermal effects in plasmonic photo-catalysis: lessons from recent experiments. OSA Continuum, 2020, 3, 483.	1.8	38
15	"Hot―electrons in metallic nanostructures—non-thermal carriers or heating?. Light: Science and Applications, 2019, 8, 89.	16.6	135
16	Assistance of metal nanoparticles in photocatalysis – nothing more than a classical heat source. Faraday Discussions, 2019, 214, 215-233.	3.2	67
17	Comment on $\hat{a} \in \mathbb{C}$ Quantifying hot carrier and thermal contributions in plasmonic photocatalysis $\hat{a} \in \mathbb{C}$ Science, 2019, 364, .	12.6	108
18	Nonmonotonic thermoelectric currents and energy harvesting in interacting double quantum dots. Physical Review B, 2019, 99, .	3.2	16

Υονάταν Ουβι

#	Article	IF	CITATIONS
19	Topological quantization of energy transport in micromechanical and nanomechanical lattices. Physical Review B, 2018, 97, .	3.2	20
20	Universal Origin for Environment-Assisted Quantum Transport in Exciton Transfer Networks. Journal of Physical Chemistry Letters, 2018, 9, 1689-1695.	4.6	31
21	Size Matters: Cocatalyst Size Effect on Charge Transfer and Photocatalytic Activity. Nano Letters, 2018, 18, 357-364.	9.1	91
22	Photoconductance from Exciton Binding in Molecular Junctions. Journal of the American Chemical Society, 2018, 140, 70-73.	13.7	64
23	Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport. Journal of Physical Chemistry Letters, 2018, 9, 3143-3148.	4.6	9
24	Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs. Physical Review E, 2017, 95, 012137.	2.1	17
25	Rampâ€Reversal Memory and Phaseâ€Boundary Scarring in Transition Metal Oxides. Advanced Materials, 2017, 29, 1605029.	21.0	32
26	Quantum transport under ac drive from the leads: A Redfield quantum master equation approach. Physical Review B, 2017, 96, .	3.2	14
27	Large Tunable Thermophase in Superconductor – Quantum Dot – Superconductor Josephson Junctions. Scientific Reports, 2016, 6, 35116.	3.3	10
28	Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nature Chemistry, 2016, 8, 484-490.	13.6	156
29	Crossover behavior of the thermal conductance and Kramers' transition rate theory. Scientific Reports, 2015, 5, 17506.	3.3	28
30	The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium. Scientific Reports, 2015, 5, 8312.	3.3	30
31	Interplay between Dephasing and Geometry and Directed Heat Flow in Exciton Transfer Complexes. Journal of Physical Chemistry C, 2015, 119, 25252-25259.	3.1	13
32	Enhanced Thermoelectric Performance of Hybrid Nanoparticle–Single-Molecule Junctions. Physical Review Applied, 2015, 3, .	3.8	30
33	Negative differential conductance in molecular junctions: an overview of experiment and theory. Journal of Physics Condensed Matter, 2015, 27, 263202.	1.8	67
34	Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale, 2015, 7, 8793-8802.	5.6	66
35	Transport Through Self-Assembled Monolayer Molecular Junctions: Role of In-Plane Dephasing. Journal of Physical Chemistry C, 2014, 118, 21119-21127.	3.1	37
36	The effect of fluctuations, thermal and otherwise, on the temperature dependence of thermopower in aromatic chain single-molecule junctions. Journal of Chemical Physics, 2013, 138, 114706.	3.0	11

Yonatan Dubi

#	Article	IF	CITATIONS
37	Tunable thermal switching via DNA-based nano-devices. Nanotechnology, 2013, 24, 095704.	2.6	23
38	Dynamical coupling and negative differential resistance from interactions across the molecule-electrode interface in molecular junctions. Journal of Chemical Physics, 2013, 139, 154710.	3.0	10
39	Possible origin of thermoelectric response fluctuations in single-molecule junctions. New Journal of Physics, 2013, 15, 105004.	2.9	17
40	Local Electronic Structure and Fano Interference in Tunneling into a Kondo Hole System. Physical Review Letters, 2012, 108, 186401.	7.8	19
41	Microwave-mediated heat transport in a quantum dot attached to leads. Journal of Physics Condensed Matter, 2012, 24, 145301.	1.8	20
42	How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18233-18237.	7.1	45
43	<i>Colloquium</i> : Heat flow and thermoelectricity in atomic and molecular junctions. Reviews of Modern Physics, 2011, 83, 131-155.	45.6	708
44	A charge density wave in the hidden order state of URu2Si2. Journal of Physics Condensed Matter, 2011, 23, 094214.	1.8	10
45	Hybridization Wave as the "Hidden Order―in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>URu</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:r Physical Review Letters 2011 106 086401</mml:r </mml:msub></mml:math 	ni ⁷ Si <td>nl:67> < mm</td>	nl: 67 > < mm
46	Driving denaturation: Nanoscale thermal transport as a probe of DNA melting. Physical Review E, 2011, 83, 050906.	2.1	37
47	Impurity-Induced Bound States and Proximity Effect in a Bilayer Exciton Condensate. Physical Review Letters, 2010, 104, 166802.	7.8	5
48	Tunneling into Clean Heavy Fermion Compounds: Origin of the Fano Line Shape. Physical Review Letters, 2010, 105, 246401.	7.8	49
49	Thermospin effects in a quantum dot connected to ferromagnetic leads. Physical Review B, 2009, 79, .	3.2	164
50	Information compressibility, entropy variation and approach to steady state in open systems. Europhysics Letters, 2009, 85, 40004.	2.0	9
51	Thermoelectric Effects in Nanoscale Junctions. Nano Letters, 2009, 9, 97-101.	9.1	153
52	Superconducting islands, phase fluctuations and the superconductor–insulator transition. Physica C: Superconductivity and lts Applications, 2008, 468, 354-357.	1.2	1
53	Island formation in disordered superconducting thin films at finite magnetic fields. Physical Review B, 2008, 78, .	3.2	21
54	Pair correlations and the survival of superconductivity in and around a superconducting impurity. Physical Review B, 2007, 75, .	3.2	3

Yonatan Dubi

#	Article	IF	CITATIONS
55	A two phase harmonic model for left ventricular function. Medical Engineering and Physics, 2007, 29, 984-988.	1.7	0
56	Nature of the superconductor–insulator transition in disordered superconductors. Nature, 2007, 449, 876-880.	27.8	301
57	Theory of the magnetoresistance of disordered superconducting films. Physical Review B, 2006, 73, .	3.2	50
58	Local current distribution and hot spots in the integer quantum Hall regime. Physical Review B, 2006, 74, .	3.2	7
59	Quantum Hall criticality, superconductor-insulator transition, and quantum percolation. Physical Review B, 2005, 71, .	3.2	14
60	Unifying Model for Several Classes of Two-Dimensional Phase Transition. Physical Review Letters, 2005, 94, 156406.	7.8	27