Andrea Scotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696605/publications.pdf Version: 2024-02-01

ANDREA SCOTTI

#	Article	IF	CITATIONS
1	The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. Journal of Chemical Physics, 2015, 142, 234905.	3.0	107
2	Exploring the colloid-to-polymer transition for ultra-low crosslinked microgels from three to two dimensions. Nature Communications, 2019, 10, 1418.	12.8	90
3	The role of ions in the self-healing behavior of soft particle suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5576-5581.	7.1	77
4	Deswelling of Microgels in Crowded Suspensions Depends on Cross-Link Density and Architecture. Macromolecules, 2019, 52, 3995-4007.	4.8	60
5	Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels. Macromolecules, 2018, 51, 2662-2671.	4.8	58
6	An anionic shell shields a cationic core allowing for uptake and release of polyelectrolytes within core–shell responsive microgels. Soft Matter, 2018, 14, 4287-4299.	2.7	52
7	How Softness Matters in Soft Nanogels and Nanogel Assemblies. Chemical Reviews, 2022, 122, 11675-11700.	47.7	48
8	Effect of the 3D Swelling of Microgels on Their 2D Phase Behavior at the Liquid–Liquid Interface. Langmuir, 2019, 35, 16780-16792.	3.5	47
9	Hollow microgels squeezed in overcrowded environments. Journal of Chemical Physics, 2018, 148, 174903.	3.0	46
10	Synthesis and structure of deuterated ultra-low cross-linked poly(<i>N</i> -isopropylacrylamide) microgels. Polymer Chemistry, 2019, 10, 2397-2405.	3.9	43
11	Stiffness Tomography of Ultra oft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, 2280-2287.	13.8	39
12	Phase behavior of binary and polydisperse suspensions of compressible microgels controlled by selective particle deswelling. Physical Review E, 2017, 96, 032609.	2.1	37
13	Probing the Internal Heterogeneity of Responsive Microgels Adsorbed to an Interface by a Sharp SFM Tip: Comparing Core–Shell and Hollow Microgels. Langmuir, 2018, 34, 4150-4158.	3.5	36
14	Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness. Nano Letters, 2019, 19, 8161-8170.	9.1	36
15	Flow properties reveal the particle-to-polymer transition of ultra-low crosslinked microgels. Soft Matter, 2020, 16, 668-678.	2.7	31
16	Temperature-sensitive soft microgels at interfaces: air–water versus oil–water. Soft Matter, 2021, 17, 976-988.	2.7	29
17	Transient formation of bcc crystals in suspensions of poly(N-isopropylacrylamide)-based microgels. Physical Review E, 2013, 88, 052308.	2.1	28
18	Tuning the Structure and Properties of Ultra-Low Cross-Linked Temperature-Sensitive Microgels at Interfaces via the Adsorption Pathway. Langmuir, 2019, 35, 14769-14781.	3.5	27

ANDREA SCOTTI

#	Article	IF	CITATIONS
19	Stimulated Transitions of Directed Nonequilibrium Selfâ€Assemblies. Advanced Materials, 2017, 29, 1703495.	21.0	25
20	Dynamically Cross-Linked Self-Assembled Thermoresponsive Microgels with Homogeneous Internal Structures. Langmuir, 2018, 34, 1601-1612.	3.5	25
21	Spontaneous deswelling of microgels controlled by counterion clouds. Physical Review E, 2019, 99, 042602.	2.1	22
22	Characterization of the volume fraction of soft deformable microgels by means of small-angle neutron scattering with contrast variation. Soft Matter, 2021, 17, 5548-5559.	2.7	20
23	Osmotic pressure of suspensions comprised of charged microgels. Physical Review E, 2021, 103, 012609.	2.1	20
24	Structural Investigation on Thermoresponsive PVA/Poly(methacrylate- <i>co</i> - <i>N</i> -isopropylacrylamide) Microgels across the Volume Phase Transition. Macromolecules, 2011, 44, 4470-4478.	4.8	19
25	Phase behavior of ultrasoft spheres show stable bcc lattices. Physical Review E, 2020, 102, 052602.	2.1	19
26	In-situ study of the impact of temperature and architecture on the interfacial structure of microgels. Nature Communications, 2022, 13, .	12.8	19
27	Tailoring the Cavity of Hollow Polyelectrolyte Microgels. Macromolecular Rapid Communications, 2020, 41, e1900422.	3.9	17
28	The Swelling of Poly(Isopropylacrylamide) Near the Î, Temperature: A Comparison between Linear and Cross‣inked Chains. Macromolecular Chemistry and Physics, 2019, 220, 1800421.	2.2	15
29	Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. Science Advances, 2022, 8, .	10.3	13
30	Absence of crystals in the phase behavior of hollow microgels. Physical Review E, 2021, 103, 022612.	2.1	10
31	Changes in the Form Factor and Size Distribution of Nanogels in Crowded Environments. Nano Letters, 2022, 22, 2412-2418.	9.1	9
32	Synthesis and structure of temperature-sensitive nanocapsules. Colloid and Polymer Science, 2020, 298, 1179-1185.	2.1	6
33	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133, 2310-2317.	2.0	4
34	Frontispiece: Stiffness Tomography of Ultra‣oft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
35	Frontispiz: Stiffness Tomography of Ultra oft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133,	2.0	0
36	Spontaneous reduction of polydispersity and self-healing colloidal crystals. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s330-s330.	0.1	0