
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696465/publications.pdf Version: 2024-02-01

SUSUMU NAKAF

#	Article	IF	CITATIONS
1	Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. Journal of Investigative Dermatology, 2021, 141, 105-113.e14.	0.7	14
2	A mouse model of asthma hronic obstructive pulmonary disease overlap induced by intratracheal papain. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 390-394.	5.7	5
3	Experimental Mouse Models of Ragweed- and Papain-Induced Allergic Conjunctivitis. Methods in Molecular Biology, 2021, 2223, 133-149.	0.9	4
4	Th2 signals are not essential for the antiâ€arthritic effects of Trichinella spiralis in mice. Parasite Immunology, 2020, 42, e12677.	1.5	7
5	Critical role of IL-33, but not IL-25 or TSLP, in silica crystal-mediated exacerbation of allergic airway eosinophilia. Biochemical and Biophysical Research Communications, 2020, 533, 493-500.	2.1	8
6	TSLP is a negative regulator of RANKL-induced osteoclastogenesis. Biochemical and Biophysical Research Communications, 2020, 530, 508-512.	2.1	3
7	Exophilin-5 regulates allergic airway inflammation by controlling IL-33–mediated Th2 responses. Journal of Clinical Investigation, 2020, 130, 3919-3935.	8.2	12
8	Innate Lymphoid Cells in the Induction of Obesity. Cell Reports, 2019, 28, 202-217.e7.	6.4	64
9	Endogenous IL-33 exerts CD8+ T cell antitumor responses overcoming pro-tumor effects by regulatory T cells in a colon carcinoma model. Biochemical and Biophysical Research Communications, 2019, 518, 331-336.	2.1	19
10	Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell, 2019, 176, 982-997.e16.	28.9	159
11	Cyclooxygenase inhibition in mice heightens adaptive―and innateâ€type responses against inhaled protease allergen and <scp>IL</scp> â€33. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2237-2240.	5.7	12
12	Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. Journal of Allergy and Clinical Immunology, 2019, 143, 2190-2201.e9.	2.9	133
13	IL-25 exacerbates autoimmune aortitis in IL-1 receptor antagonist-deficient mice. Scientific Reports, 2019, 9, 17067.	3.3	5
14	The optimal age for epicutaneous sensitization following tape-stripping in BALB/c mice. Allergology International, 2018, 67, 380-387.	3.3	8
15	IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Scientific Reports, 2018, 8, 6639.	3.3	65
16	IL-25 enhances TH17 cell–mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2018, 142, 1500-1509.e10.	2.9	41
17	Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 141, 300-310.e11.	2.9	182
18	IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Scientific Reports, 2018, 8, 18052.	3.3	34

#	Article	IF	CITATIONS
19	IL-36α is involved in hapten-specific T-cell induction, but not local inflammation, during contact hypersensitivity. Biochemical and Biophysical Research Communications, 2018, 506, 429-436.	2.1	6
20	The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Scientific Reports, 2018, 8, 15750.	3.3	17
21	Gastrinâ€Releasing Peptide Is Involved in the Establishment of Allergic Rhinitis in Mice. Laryngoscope, 2018, 128, E377-E384.	2.0	5
22	Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Scientific Reports, 2018, 8, 11721.	3.3	26
23	Interleukin-33 Protects Ischemic Brain Injury by Regulating Specific Microglial Activities. Neuroscience, 2018, 385, 75-89.	2.3	33
24	Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nature Immunology, 2018, 19, 755-765.	14.5	134
25	Development of chronic allergic responses by dampening Bcl6-mediated suppressor activity in memory T helper 2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E741-E750.	7.1	13
26	Human eosinophils constitutively express a unique serine protease, PRSS33. Allergology International, 2017, 66, 463-471.	3.3	12
27	IL-33 in clinical practice: Size matters?. Journal of Allergy and Clinical Immunology, 2017, 140, 381-383.	2.9	24
28	Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Experimental Parasitology, 2017, 177, 1-12.	1.2	23
29	Skin Treatment with Detergent Promotes Protease Allergen-Dependent Epicutaneous Sensitization in a Manner Different from Tape Stripping in Mice. Journal of Investigative Dermatology, 2017, 137, 1578-1582.	0.7	11
30	A Novel Mouse Model of iNKT Cell-deficiency Generated by CRISPR/Cas9 Reveals a Pathogenic Role of iNKT Cells in Metabolic Disease. Scientific Reports, 2017, 7, 12765.	3.3	13
31	Role of interleukin-25 in development of spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Biochemistry and Biophysics Reports, 2017, 12, 62-65.	1.3	1
32	Contributions of Interleukinâ€33 and TSLP in a papainâ€soaked contact lensâ€induced mouse conjunctival inflammation model. Immunity, Inflammation and Disease, 2017, 5, 515-525.	2.7	17
33	Disrupting ceramide-CD300f interaction prevents septic peritonitis by stimulating neutrophil recruitment. Scientific Reports, 2017, 7, 4298.	3.3	23
34	Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science, 2017, 85, 106-114.	1.9	52
35	Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight, 2017, 2, e90721.	5.0	19
36	IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFÎ ² Release. PLoS ONE, 2016, 11, e0161507.	2.5	105

#	Article	IF	CITATIONS
37	Promotion of Expansion and Differentiation of Hematopoietic Stem Cells by Interleukin-27 into Myeloid Progenitors to Control Infection in Emergency Myelopoiesis. PLoS Pathogens, 2016, 12, e1005507.	4.7	60
38	Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. Journal of Investigative Dermatology, 2016, 136, 1408-1417.	0.7	41
39	IL-25, IL-33 and TSLP receptor are not critical for development of experimental murine malaria. Biochemistry and Biophysics Reports, 2016, 5, 191-195.	1.3	7
40	Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1395-1403.e6.	2.9	48
41	Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes. Journal of Immunology, 2016, 196, 3559-3569.	0.8	16
42	Regulatory roles of mast cells in immune responses. Seminars in Immunopathology, 2016, 38, 623-629.	6.1	32
43	TSLP receptor is not essential for house dust mite-induced allergic rhinitis in mice. Biochemistry and Biophysics Reports, 2016, 7, 119-123.	1.3	4
44	Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22. Biochemical and Biophysical Research Communications, 2016, 478, 135-142.	2.1	6
45	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	12.8	117
46	TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens. Allergology International, 2016, 65, 459-465.	3.3	5
47	Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E762-71.	7.1	64
48	Interferonâ€ <i>γ</i> constrains cytokine production of group 2 innate lymphoid cells. Immunology, 2016, 147, 21-29.	4.4	32
49	The Alarmin IL-33 Derived from HSV-2-Infected Keratinocytes Triggers MastÂCell-Mediated Antiviral Innate Immunity. Journal of Investigative Dermatology, 2016, 136, 1290-1292.	0.7	15
50	Roles of Epithelial Cell–Derived Type 2–Initiating Cytokines in Experimental Allergic Conjunctivitis. , 2015, 56, 5194.		20
51	The Interleukin-33-p38 Kinase Axis Confers Memory T Helper 2 Cell Pathogenicity in the Airway. Immunity, 2015, 42, 294-308.	14.3	199
52	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	14.5	442
53	An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43, 175-186.	14.3	240
54	The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood, 2015, 125, 3183-3192.	1.4	133

#	Article	IF	CITATIONS
55	Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nature Communications, 2015, 6, 7600.	12.8	85
56	CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes. International Immunology, 2015, 27, 169-181.	4.0	15
57	Reciprocal effects of Schistosoma mansoni infection on spontaneous autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Parasitology International, 2015, 64, 13-17.	1.3	11
58	The Importance of Bacterial and Viral Infections Associated with Adult Asthma Exacerbations in Clinical Practice. PLoS ONE, 2015, 10, e0123584.	2.5	83
59	IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS ONE, 2015, 10, e0134226.	2.5	34
60	Emerging roles of IL-33 in inflammation and immune regulation. Inflammation and Regeneration, 2015, 35, 069-077.	3.7	0
61	Galectin-9 Enhances Cytokine Secretion, but Suppresses Survival and Degranulation, in Human Mast Cell Line. PLoS ONE, 2014, 9, e86106.	2.5	27
62	Silica and Double-Stranded RNA Synergistically Induce Bronchial Epithelial Apoptosis and Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 344-353.	2.9	16
63	Potential role of myeloid cell/eosinophil-derived IL-17 in LPS-induced endotoxin shock. Biochemical and Biophysical Research Communications, 2014, 453, 1-6.	2.1	17
64	IL-17A as an Inducer for Th2 Immune Responses in Murine Atopic Dermatitis Models. Journal of Investigative Dermatology, 2014, 134, 2122-2130.	0.7	137
65	Basophil-Derived Interleukin-4 Controls the Function of Natural Helper Cells, a Member of ILC2s, in Lung Inflammation. Immunity, 2014, 40, 758-771.	14.3	263
66	Role of Interleukin-33 in Innate-Type Immune Cells in Allergy. Allergology International, 2013, 62, 13-20.	3.3	68
67	IL-33–Mediated Innate Response and Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen–Induced Allergic Airway Inflammation. Journal of Immunology, 2013, 190, 4489-4499.	0.8	151
68	Epithelial Cell-Derived IL-25, but Not Th17 Cell-Derived IL-17 or IL-17F, Is Crucial for Murine Asthma. Journal of Immunology, 2012, 189, 3641-3652.	0.8	93
69	Amphiregulin is Not Essential for Induction of Contact Hypersensitivity. Allergology International, 2010, 59, 277-284.	3.3	4
70	Development of IL-17-mediated Delayed-Type Hypersensitivity Is Not Affected by Down-Regulation of IL-25 Expression. Allergology International, 2010, 59, 399-408.	3.3	25
71	IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18581-18586.	7.1	594
72	IL-33-induced activation of human basophils and eosinophils via ST2. Inflammation and Regeneration, 2010, 30, 181-185.	3.7	0

#	Article	IF	CITATIONS
73	Ankylosing enthesitis associated with up-regulated IFN-γ and IL-17 production in (BXSB × NZB) F1 male mice: a new mouse model. Modern Rheumatology, 2009, 19, 316-322.	1.8	26
74	Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. Journal of Leukocyte Biology, 2007, 81, 1258-1268.	3.3	262
75	Mast cell–derived TNF can promote Th17 cell–dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood, 2007, 109, 3640-3648.	1.4	143
76	TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood, 2007, 110, 2565-2568.	1.4	150
77	TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. Journal of Allergy and Clinical Immunology, 2007, 119, 680-686.	2.9	94
78	Mast cell–derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. Journal of Allergy and Clinical Immunology, 2007, 120, 48-55.	2.9	169
79	Mast Cells Enhance T Cell Activation: Importance of Mast Cell Costimulatory Molecules and Secreted TNF. Journal of Immunology, 2006, 176, 2238-2248.	0.8	343
80	RabGEF1 regulates stem cell factor/câ€Kitâ€mediated signaling events and biological responses in mast cells. FASEB Journal, 2006, 20, LB123.	0.5	0
81	Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6467-6472.	7.1	226
82	IL-1-induced tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by inducing IFN-gamma-inducible protein 10 in the elicitation phase of the contact hypersensitivity response. International Immunology, 2003, 15, 251-260.	4.0	61
83	Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice. Journal of Immunology, 2003, 171, 6173-6177.	0.8	1,161
84	IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. International Immunology, 2003, 15, 483-490.	4.0	126
85	IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5986-5990.	7.1	450
86	Antigen-Specific T Cell Sensitization Is Impaired in IL-17-Deficient Mice, Causing Suppression of Allergic Cellular and Humoral Responses. Immunity, 2002, 17, 375-387.	14.3	974
87	Interleukinâ€1β, but not interleukinâ€1α, is required for Tâ€cellâ€dependent antibody production. Immunology, 2001, 104, 402-409.	4.4	137
88	RabGEF1, a Negative Regulator of Ras Signalling, Mast Cell Activation and Skin Inflammation. Novartis Foundation Symposium, 0, , 115-130.	1.1	1