Susumu Nakae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6696465/publications.pdf

Version: 2024-02-01

		87888	5	56724
88	8,736	38		83
papers	citations	h-index		g-index
89	89	89		12161
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice. Journal of Immunology, 2003, 171, 6173-6177.	0.8	1,161
2	Antigen-Specific T Cell Sensitization Is Impaired in IL-17-Deficient Mice, Causing Suppression of Allergic Cellular and Humoral Responses. Immunity, 2002, 17, 375-387.	14.3	974
3	IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18581-18586.	7.1	594
4	IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5986-5990.	7.1	450
5	The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nature Immunology, 2015, 16, 276-285.	14.5	442
6	Mast Cells Enhance T Cell Activation: Importance of Mast Cell Costimulatory Molecules and Secreted TNF. Journal of Immunology, 2006, 176, 2238-2248.	0.8	343
7	Basophil-Derived Interleukin-4 Controls the Function of Natural Helper Cells, a Member of ILC2s, in Lung Inflammation. Immunity, 2014, 40, 758-771.	14.3	263
8	Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. Journal of Leukocyte Biology, 2007, 81, 1258-1268.	3.3	262
9	An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43, 175-186.	14.3	240
10	Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6467-6472.	7.1	226
11	The Interleukin-33-p38 Kinase Axis Confers Memory T Helper 2 Cell Pathogenicity in the Airway. Immunity, 2015, 42, 294-308.	14.3	199
12	Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 141, 300-310.e11.	2.9	182
13	Mast cell–derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. Journal of Allergy and Clinical Immunology, 2007, 120, 48-55.	2.9	169
14	Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell, 2019, 176, 982-997.e16.	28.9	159
15	IL-33–Mediated Innate Response and Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen–Induced Allergic Airway Inflammation. Journal of Immunology, 2013, 190, 4489-4499.	0.8	151
16	TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood, 2007, 110, 2565-2568.	1.4	150
17	Mast cell–derived TNF can promote Th17 cell–dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood, 2007, 109, 3640-3648.	1.4	143
18	Interleukinâ€1β, but not interleukinâ€1α, is required for Tâ€cellâ€dependent antibody production. Immunology, 2001, 104, 402-409.	4.4	137

#	Article	IF	CITATIONS
19	IL-17A as an Inducer for Th2 Immune Responses in Murine Atopic Dermatitis Models. Journal of Investigative Dermatology, 2014, 134, 2122-2130.	0.7	137
20	Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nature Immunology, 2018, 19, 755-765.	14.5	134
21	The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood, 2015, 125, 3183-3192.	1.4	133
22	Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. Journal of Allergy and Clinical Immunology, 2019, 143, 2190-2201.e9.	2.9	133
23	IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. International Immunology, 2003, 15, 483-490.	4.0	126
24	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	12.8	117
25	IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFî² Release. PLoS ONE, 2016, 11, e0161507.	2.5	105
26	TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. Journal of Allergy and Clinical Immunology, 2007, 119, 680-686.	2.9	94
27	Epithelial Cell-Derived IL-25, but Not Th17 Cell-Derived IL-17 or IL-17F, Is Crucial for Murine Asthma. Journal of Immunology, 2012, 189, 3641-3652.	0.8	93
28	Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation. Nature Communications, 2015, 6, 7600.	12.8	85
29	The Importance of Bacterial and Viral Infections Associated with Adult Asthma Exacerbations in Clinical Practice. PLoS ONE, 2015, 10, e0123584.	2.5	83
30	Role of Interleukin-33 in Innate-Type Immune Cells in Allergy. Allergology International, 2013, 62, 13-20.	3.3	68
31	IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Scientific Reports, 2018, 8, 6639.	3.3	65
32	Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E762-71.	7.1	64
33	Innate Lymphoid Cells in the Induction of Obesity. Cell Reports, 2019, 28, 202-217.e7.	6.4	64
34	IL-1-induced tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by inducing IFN-gamma-inducible protein 10 in the elicitation phase of the contact hypersensitivity response. International Immunology, 2003, 15, 251-260.	4.0	61
35	Promotion of Expansion and Differentiation of Hematopoietic Stem Cells by Interleukin-27 into Myeloid Progenitors to Control Infection in Emergency Myelopoiesis. PLoS Pathogens, 2016, 12, e1005507.	4.7	60
36	Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. Journal of Dermatological Science, 2017, 85, 106-114.	1.9	52

#	Article	IF	Citations
37	Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1395-1403.e6.	2.9	48
38	Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. Journal of Investigative Dermatology, 2016, 136, 1408-1417.	0.7	41
39	IL-25 enhances TH17 cellâ \in "mediated contact dermatitis by promoting IL- $\hat{\Pi}^2$ production by dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2018, 142, 1500-1509.e10.	2.9	41
40	IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Scientific Reports, 2018, 8, 18052.	3.3	34
41	IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS ONE, 2015, 10, e0134226.	2.5	34
42	Interleukin-33 Protects Ischemic Brain Injury by Regulating Specific Microglial Activities. Neuroscience, 2018, 385, 75-89.	2.3	33
43	Regulatory roles of mast cells in immune responses. Seminars in Immunopathology, 2016, 38, 623-629.	6.1	32
44	Interferonâ€ <i>γ</i> constrains cytokine production of group 2 innate lymphoid cells. Immunology, 2016, 147, 21-29.	4.4	32
45	Galectin-9 Enhances Cytokine Secretion, but Suppresses Survival and Degranulation, in Human Mast Cell Line. PLoS ONE, 2014, 9, e86106.	2.5	27
46	Ankylosing enthesitis associated with up-regulated IFN- \hat{l}^3 and IL-17 production in (BXSB $\tilde{A}-$ NZB) F1 male mice: a new mouse model. Modern Rheumatology, 2009, 19, 316-322.	1.8	26
47	Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL- $1\hat{l}^2$ production by DCs. Scientific Reports, 2018, 8, 11721.	3.3	26
48	Development of IL-17-mediated Delayed-Type Hypersensitivity Is Not Affected by Down-Regulation of IL-25 Expression. Allergology International, 2010, 59, 399-408.	3.3	25
49	IL-33 in clinical practice: Size matters?. Journal of Allergy and Clinical Immunology, 2017, 140, 381-383.	2.9	24
50	Dual genetic absence of STAT6 and IL-10 does not abrogate anti-hyperglycemic effects of Schistosoma mansoni in streptozotocin-treated diabetic mice. Experimental Parasitology, 2017, 177, 1-12.	1.2	23
51	Disrupting ceramide-CD300f interaction prevents septic peritonitis by stimulating neutrophil recruitment. Scientific Reports, 2017, 7, 4298.	3.3	23
52	Roles of Epithelial Cell–Derived Type 2–Initiating Cytokines in Experimental Allergic Conjunctivitis. , 2015, 56, 5194.		20
53	Prolonged activation of IL-5–producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight, 2017, 2, e90721.	5.0	19
54	Endogenous IL-33 exerts CD8+ T cell antitumor responses overcoming pro-tumor effects by regulatory T cells in a colon carcinoma model. Biochemical and Biophysical Research Communications, 2019, 518, 331-336.	2.1	19

#	Article	IF	CITATIONS
55	Potential role of myeloid cell/eosinophil-derived IL-17 in LPS-induced endotoxin shock. Biochemical and Biophysical Research Communications, 2014, 453, 1-6.	2.1	17
56	Contributions of Interleukinâ€33 and TSLP in a papainâ€soaked contact lensâ€induced mouse conjunctival inflammation model. Immunity, Inflammation and Disease, 2017, 5, 515-525.	2.7	17
57	The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Scientific Reports, 2018, 8, 15750.	3.3	17
58	Silica and Double-Stranded RNA Synergistically Induce Bronchial Epithelial Apoptosis and Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 344-353.	2.9	16
59	Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes. Journal of Immunology, 2016, 196, 3559-3569.	0.8	16
60	CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes. International Immunology, 2015, 27, 169-181.	4.0	15
61	The Alarmin IL-33 Derived from HSV-2-Infected Keratinocytes Triggers MastÂCell-Mediated Antiviral Innate Immunity. Journal of Investigative Dermatology, 2016, 136, 1290-1292.	0.7	15
62	Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. Journal of Investigative Dermatology, 2021, 141, 105-113.e14.	0.7	14
63	Development of chronic allergic responses by dampening Bcl6-mediated suppressor activity in memory T helper 2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E741-E750.	7.1	13
64	A Novel Mouse Model of iNKT Cell-deficiency Generated by CRISPR/Cas9 Reveals a Pathogenic Role of iNKT Cells in Metabolic Disease. Scientific Reports, 2017, 7, 12765.	3.3	13
65	Human eosinophils constitutively express a unique serine protease, PRSS33. Allergology International, 2017, 66, 463-471.	3.3	12
66	Cyclooxygenase inhibition in mice heightens adaptive―and innateâ€type responses against inhaled protease allergen and <scp>IL</scp> â€33. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2237-2240.	5.7	12
67	Exophilin-5 regulates allergic airway inflammation by controlling IL-33–mediated Th2 responses. Journal of Clinical Investigation, 2020, 130, 3919-3935.	8.2	12
68	Reciprocal effects of Schistosoma mansoni infection on spontaneous autoimmune arthritis in IL-1 receptor antagonist-deficient mice. Parasitology International, 2015, 64, 13-17.	1.3	11
69	Skin Treatment with Detergent Promotes Protease Allergen-Dependent Epicutaneous Sensitization in a Manner Different from Tape Stripping in Mice. Journal of Investigative Dermatology, 2017, 137, 1578-1582.	0.7	11
70	The optimal age for epicutaneous sensitization following tape-stripping in BALB/c mice. Allergology International, 2018, 67, 380-387.	3.3	8
71	Critical role of IL-33, but not IL-25 or TSLP, in silica crystal-mediated exacerbation of allergic airway eosinophilia. Biochemical and Biophysical Research Communications, 2020, 533, 493-500.	2.1	8
72	IL-25, IL-33 and TSLP receptor are not critical for development of experimental murine malaria. Biochemistry and Biophysics Reports, 2016, 5, 191-195.	1.3	7

#	Article	IF	Citations
73	Th2 signals are not essential for the antiâ€arthritic effects of Trichinella spiralis in mice. Parasite Immunology, 2020, 42, e12677.	1.5	7
74	Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22. Biochemical and Biophysical Research Communications, 2016, 478, 135-142.	2.1	6
75	IL-36α is involved in hapten-specific T-cell induction, but not local inflammation, during contact hypersensitivity. Biochemical and Biophysical Research Communications, 2018, 506, 429-436.	2.1	6
76	TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens. Allergology International, 2016, 65, 459-465.	3.3	5
77	Gastrinâ€Releasing Peptide Is Involved in the Establishment of Allergic Rhinitis in Mice. Laryngoscope, 2018, 128, E377-E384.	2.0	5
78	IL-25 exacerbates autoimmune aortitis in IL-1 receptor antagonist-deficient mice. Scientific Reports, 2019, 9, 17067.	3.3	5
79	A mouse model of asthmaâ€chronic obstructive pulmonary disease overlap induced by intratracheal papain. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 390-394.	5.7	5
80	Amphiregulin is Not Essential for Induction of Contact Hypersensitivity. Allergology International, 2010, 59, 277-284.	3.3	4
81	TSLP receptor is not essential for house dust mite-induced allergic rhinitis in mice. Biochemistry and Biophysics Reports, 2016, 7, 119-123.	1.3	4
82	Experimental Mouse Models of Ragweed- and Papain-Induced Allergic Conjunctivitis. Methods in Molecular Biology, 2021, 2223, 133-149.	0.9	4
83	TSLP is a negative regulator of RANKL-induced osteoclastogenesis. Biochemical and Biophysical Research Communications, 2020, 530, 508-512.	2.1	3
84	Role of interleukin-25 in development of spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Biochemistry and Biophysics Reports, 2017, 12, 62-65.	1.3	1
85	RabGEF1, a Negative Regulator of Ras Signalling, Mast Cell Activation and Skin Inflammation. Novartis Foundation Symposium, 0, , 115-130.	1.1	1
86	RabGEF1 regulates stem cell factor/câ€Kitâ€mediated signaling events and biological responses in mast cells. FASEB Journal, 2006, 20, LB123.	0.5	0
87	IL-33-induced activation of human basophils and eosinophils via ST2. Inflammation and Regeneration, 2010, 30, 181-185.	3.7	0
88	Emerging roles of IL-33 in inflammation and immune regulation. Inflammation and Regeneration, 2015, 35, 069-077.	3.7	0