List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/669596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activated STING in a Vascular and Pulmonary Syndrome. New England Journal of Medicine, 2014, 371, 507-518.	27.0	1,074
2	Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature, 1995, 377, 65-68.	27.8	864
3	Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing. New England Journal of Medicine, 2014, 370, 2408-2417.	27.0	760
4	Early-Onset Stroke and Vasculopathy Associated with Mutations in ADA2. New England Journal of Medicine, 2014, 370, 911-920.	27.0	687
5	Engraftment Potential of Human Amnion and Chorion Cells Derived from Term Placenta. Transplantation, 2004, 78, 1439-1448.	1.0	318
6	The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Research, 2013, 23, 2103-2114.	5.5	236
7	Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood, 2012, 120, 3635-3646.	1.4	222
8	How I treat ADA deficiency. Blood, 2009, 114, 3524-3532.	1.4	206
9	Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood, 2003, 101, 2563-2569.	1.4	203
10	Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nature Genetics, 2009, 41, 106-111.	21.4	198
11	Immune Response to Fetal Calf Serum by Two Adenosine Deaminase-Deficient Patients After T Cell Gene Therapy. Human Gene Therapy, 2002, 13, 1605-1610.	2.7	162
12	Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. Journal of Clinical Immunology, 2018, 38, 13-27.	3.8	156
13	American society of gene therapy (ASCT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Molecular Therapy, 2003, 8, 180-187.	8.2	147
14	X-SCID transgene leukaemogenicity. Nature, 2006, 443, E5-E6.	27.8	144
15	Structural and Functional Basis for JAK3-Deficient Severe Combined Immunodeficiency. Blood, 1997, 90, 3996-4003.	1.4	138
16	Transfer of the HSV-tk Gene into Donor Peripheral Blood Lymphocytes for In Vivo Modulation of Donor Anti-Tumor Immunity after Allogeneic Bone Marrow Transplantation. The San Raffaele Hospital, Milan, Italy. Human Gene Therapy, 1995, 6, 813-819.	2.7	137
17	Somatic mosaicism in Wiskott-Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8697-8702.	7.1	137
18	Unexpected Effects of FERM Domain Mutations on Catalytic Activity of Jak3. Molecular Cell, 2001, 8, 959-969.	9.7	127

#	Article	IF	CITATIONS
19	Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunological Reviews, 2005, 203, 127-142.	6.0	126
20	Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains. Molecular and Cellular Biology, 2000, 20, 947-956.	2.3	125
21	Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. New England Journal of Medicine, 2021, 384, 2002-2013.	27.0	122
22	Signaling via IL-2 and IL-4 in JAK3-Deficient Severe Combined Immunodeficiency Lymphocytes: JAK3-Dependent and Independent Pathways. Immunity, 1996, 5, 605-615.	14.3	120
23	Improving cellular therapy for primary immune deficiency diseases: Recognition, diagnosis, and management. Journal of Allergy and Clinical Immunology, 2009, 124, 1152-1160.e12.	2.9	110
24	Jak3 and the pathogenesis of severe combined immunodeficiency. Molecular Immunology, 2004, 41, 727-737.	2.2	109
25	Nuclear Role of WASp in the Pathogenesis of Dysregulated T _H 1 Immunity in Human Wiskott-Aldrich Syndrome. Science Translational Medicine, 2010, 2, 37ra44.	12.4	109
26	Type I interferonopathies in pediatric rheumatology. Pediatric Rheumatology, 2016, 14, 35.	2.1	104
27	A novel form of complete IL-12/IL-23 receptor Â1 deficiency with cell surface-expressed nonfunctional receptors. Blood, 2004, 104, 2095-2101.	1.4	103
28	B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood, 2012, 119, 2819-2828.	1.4	99
29	Of genes and phenotypes: the immunological and molecular spectrum of combined immune deficiency.Defects of the gc-JAK3 signaling pathway as a model. Immunological Reviews, 2000, 178, 39-48.	6.0	97
30	Impaired in vitro regulatory T cell function associated with Wiskott–Aldrich syndrome. Clinical Immunology, 2007, 124, 41-48.	3.2	95
31	Autoimmunity in Wiskott-Aldrich syndrome. Current Opinion in Rheumatology, 2003, 15, 446-453.	4.3	89
32	Gene Therapy Fulfilling Its Promise. New England Journal of Medicine, 2009, 360, 518-521.	27.0	88
33	Efficacy and Adverse Events During Janus Kinase Inhibitor Treatment of SAVI Syndrome. Journal of Clinical Immunology, 2019, 39, 476-485.	3.8	85
34	Cytokines and their role in lymphoid development, differentiation and homeostasis. Current Opinion in Allergy and Clinical Immunology, 2002, 2, 495-506.	2.3	81
35	Efficient Gene Transfer to Human Peripheral Blood Monocyte-Derived Dendritic Cells Using Human Immunodeficiency Virus Type 1-Based Lentiviral Vectors. Human Gene Therapy, 2000, 11, 1901-1909.	2.7	80
36	In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction Journal of Experimental Medicine, 1996, 183, 2687-2692.	8.5	71

#	Article	IF	CITATIONS
37	Clinical efficacy of gene-modified stem cells in adenosine deaminase–deficient immunodeficiency. Journal of Clinical Investigation, 2017, 127, 1689-1699.	8.2	70
38	Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. Journal of Clinical Investigation, 2003, 111, 1389-1397.	8.2	69
39	Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. Journal of Experimental Medicine, 2015, 212, 1663-1677.	8.5	67
40	NBAS mutations cause a multisystem disorder involving bone, connective tissue, liver, immune system, and retina. American Journal of Medical Genetics, Part A, 2015, 167, 2902-2912.	1.2	66
41	Individualized Iterative Phenotyping for Genome-wide Analysis of Loss-of-Function Mutations. American Journal of Human Genetics, 2015, 96, 913-925.	6.2	66
42	Primary Immune Deficiency Treatment Consortium (PIDTC) report. Journal of Allergy and Clinical Immunology, 2014, 133, 335-347.e11.	2.9	65
43	Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase–deficient severe combined immune deficiency. Journal of Allergy and Clinical Immunology, 2012, 129, 762-769.e1.	2.9	64
44	Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes and Immunity, 2001, 2, 422-432.	4.1	63
45	Lymphoid Development and Function in X-Linked Severe Combined Immunodeficiency Mice after Stem Cell Gene Therapy. Molecular Therapy, 2000, 1, 145-153.	8.2	59
46	Efficient Methods for Targeted Mutagenesis in Zebrafish Using Zinc-Finger Nucleases: Data from Targeting of Nine Genes Using CompoZr or CoDA ZFNs. PLoS ONE, 2013, 8, e57239.	2.5	58
47	Nuclear Role of WASp in Gene Transcription Is Uncoupled from Its ARP2/3-Dependent Cytoplasmic Role in Actin Polymerization. Journal of Immunology, 2014, 193, 150-160.	0.8	57
48	Somatic mosaicism in primary immune deficiencies. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 510-514.	2.3	56
49	FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. Journal of Clinical Investigation, 2016, 126, 4030-4044.	8.2	53
50	Retrovirus-Mediated WASP Gene Transfer Corrects Wiskott-Aldrich Syndrome T-Cell Dysfunction. Human Gene Therapy, 2002, 13, 1039-1046.	2.7	52
51	Bovine apolipoprotein B-100 is a dominant immunogen in therapeutic cell populations cultured in fetal calf serum in mice and humans. Blood, 2007, 110, 501-508.	1.4	51
52	Differential contribution of Wiskott-Aldrich syndrome protein to selective advantage in T- and B-cell lineages. Blood, 2004, 103, 676-678.	1.4	50
53	Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. Journal of Experimental Medicine, 2015, 212, 1185-1202.	8.5	49
54	Systemic autoimmunity and defective Fas ligand secretion in the absence of the Wiskott-Aldrich syndrome protein. Blood, 2010, 116, 740-747.	1.4	48

#	Article	IF	CITATIONS
55	Revertant somatic mosaicism in the Wiskott–Aldrich syndrome. Immunologic Research, 2009, 44, 127-131.	2.9	47
56	Advances in the understanding of cytokine signal transduction: the role of Jaks and STATs in immunoregulation and the pathogenesis of immunodeficiency. Journal of Clinical Immunology, 1997, 17, 431-447.	3.8	45
57	Myeloid dysplasia and bone marrow hypocellularity in adenosine deaminase-deficient severe combined immune deficiency. Blood, 2011, 118, 2688-2694.	1.4	45
58	Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency: Report on 30 Patients. Journal of Clinical Immunology, 2021, 41, 1633-1647.	3.8	43
59	Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients. Journal of Clinical Investigation, 2015, 125, 3941-3951.	8.2	43
60	Development of Autologous T Lymphocytes in Two Males with X-Linked Severe Combined Immune Deficiency: Molecular and Cellular Characterization. Clinical Immunology, 2000, 95, 39-50.	3.2	42
61	Expansion of Hepatic and Hematopoietic Stem Cells Utilizing Mouse Embryonic Liver Explants. Cell Transplantation, 2001, 10, 81-89.	2.5	41
62	Retrovirus-mediated WASP gene transfer corrects defective actin polymerization in B cell lines from Wiskott–Aldrich syndrome patients carrying â€~null' mutations. Gene Therapy, 1999, 6, 1170-1174.	4.5	40
63	CXCL12 Signaling Is Independent of Jak2 and Jak3. Journal of Biological Chemistry, 2005, 280, 17408-17414.	3.4	40
64	Lessons from the Wiskott–Aldrich Syndrome. New England Journal of Medicine, 2006, 355, 1759-1761.	27.0	39
65	Measurement of Proliferative Responses of Cultured Lymphocytes. Current Protocols in Immunology, 2011, 94, Unit7.10.	3.6	39
66	Retroviral Transfer of Acid <i>α</i> -Glucosidase cDNA to Enzyme-Deficient Myoblasts Results in Phenotypic Spread of the Genotypic Correction by Both Secretion and Fusion. Human Gene Therapy, 1997, 8, 1555-1563.	2.7	38
67	Analysis of T-cell repertoire diversity in Wiskott-Aldrich syndrome. Blood, 2005, 106, 3895-3897.	1.4	38
68	Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood, 1998, 91, 949-955.	1.4	37
69	In vivo retroviral gene transfer by direct intrafemoral injection results in correction of the SCID phenotype in Jak3 knock-out animals. Blood, 2003, 102, 843-848.	1.4	37
70	Prolonged pancytopenia in a gene therapy patient with ADA-deficient SCID and trisomy 8 mosaicism: a case report. Blood, 2007, 109, 503-506.	1.4	36
71	Hierarchy of Protein Tyrosine Kinases in Interleukin-2 (IL-2) Signaling: Activation of Syk Depends on Jak3; However, Neither Syk nor Lck Is Required for IL-2-Mediated STAT Activation. Molecular and Cellular Biology, 2000, 20, 4371-4380.	2.3	35
72	Somatic mosaicism in the Wiskott–Aldrich syndrome: Molecular and functional characterization of genotypic revertants. Clinical Immunology, 2010, 135, 72-83.	3.2	35

#	Article	IF	CITATIONS
73	The expression of Wiskott-Aldrich syndrome protein (WASP) is dependent on WASP-interacting protein (WIP). International Immunology, 2006, 19, 185-192.	4.0	34
74	Recent advances in gene therapy for severe congenital immunodeficiency diseases. Current Opinion in Hematology, 2008, 15, 375-380.	2.5	34
75	High incidence of lymphomas in a subgroup of wiskott-aldrich syndrome patients. British Journal of Haematology, 2003, 121, 529-530.	2.5	33
76	Multiple patients with revertant mosaicism in a single Wiskott-Aldrich syndrome family. Blood, 2004, 104, 1270-1272.	1.4	32
77	Gene Therapy for Severe Combined Immunodeficiency Caused by Adenosine Deaminase Deficiency: Improved Retroviral Vectors for Clinical Trials. Acta Haematologica, 1999, 101, 89-96.	1.4	30
78	Cartilage hair hypoplasia mutations that lead to <i>RMRP</i> promoter inefficiency or RNA transcript instability. American Journal of Medical Genetics, Part A, 2007, 143A, 2675-2681.	1.2	30
79	Unprecedented diversity of genotypic revertants in lymphocytes of a patient with Wiskott-Aldrich syndrome. Blood, 2008, 111, 5064-5067.	1.4	30
80	Self-inactivating Retroviral Vector-mediated Gene Transfer Induces Oncogene Activation and Immortalization of Primary Murine Bone Marrow Cells. Molecular Therapy, 2009, 17, 1910-1918.	8.2	29
81	Combined Immunodeficiencies Due to Defects in Signal Transduction: Defects of the γc-JAK3 Signaling Pathway as a Model. Immunobiology, 2000, 202, 106-119.	1.9	28
82	Molecular and phenotypic abnormalities of B lymphocytes in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2014, 133, 896-899.e4.	2.9	28
83	Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood, 2021, 138, 1304-1316.	1.4	28
84	Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients. Blood, 2017, 129, 2624-2635.	1.4	27
85	Transcriptomic Signature Differences BetweenÂSARS-CoV-2 and Influenza Virus Infected Patients. Frontiers in Immunology, 2021, 12, 666163.	4.8	27
86	Interleukin-4 Signaling in B Lymphocytes from Patients with X-linked Severe Combined Immunodeficiency. Journal of Biological Chemistry, 1997, 272, 7314-7319.	3.4	26
87	Outcomes in Two Japanese Adenosine Deaminase-Deficiency Patients Treated by Stem Cell Gene Therapy with No Cytoreductive Conditioning. Journal of Clinical Immunology, 2015, 35, 384-398.	3.8	25
88	Broad spectrum of autoantibodies in patients with Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Journal of Allergy and Clinical Immunology, 2015, 136, 1401-1404.e3.	2.9	25
89	SLAM-associated Protein Deficiency Causes Imbalanced Early Signal Transduction and Blocks Downstream Activation in T Cells from X-linked Lymphoproliferative Disease Patients. Journal of Biological Chemistry, 2003, 278, 29593-29599.	3.4	24
90	Foamy Virus Vector-mediated Gene Correction of a Mouse Model of Wiskott–Aldrich Syndrome. Molecular Therapy, 2012, 20, 1270-1279.	8.2	24

#	Article	IF	CITATIONS
91	Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. International Journal of Hematology, 2014, 99, 383-392.	1.6	24
92	N-WASP is required for B-cell–mediated autoimmunity in Wiskott-Aldrich syndrome. Blood, 2016, 127, 216-220.	1.4	24
93	Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. Journal of Clinical Investigation, 2002, 109, 1261-1269.	8.2	24
94	Molecular Modeling of the Jak3 Kinase Domains and Structural Basis for Severe Combined Immunodeficiency. Clinical Immunology, 2000, 96, 108-118.	3.2	23
95	Reconstitution of lymphoid development and function in ZAP-70–deficient mice following gene transfer into bone marrow cells. Blood, 2002, 100, 1248-1256.	1.4	23
96	Structure-Function Analysis of the WIP Role in T Cell Receptor-stimulated NFAT Activation. Journal of Biological Chemistry, 2007, 282, 30303-30310.	3.4	22
97	Elevated IgE and atopy in patients treated for early-onset ADA-SCID. Journal of Allergy and Clinical Immunology, 2013, 132, 1444-1446.e5.	2.9	22
98	A Novel Function of RNAs Arising From the Long Terminal Repeat of Human Endogenous Retrovirus 9 in Cell Cycle Arrest. Journal of Virology, 2013, 87, 25-36.	3.4	22
99	Lack of dominant-negative effects of a truncated Î ³ c on retroviral-mediated gene correction of immunodeficient mice. Blood, 2001, 97, 1618-1624.	1.4	21
100	Comparison of Five Retrovirus Vectors Containing the Human IL-2 Receptor Î ³ Chain Gene for Their Ability to Restore T and B Lymphocytes in the X-Linked Severe Combined Immunodeficiency Mouse Model. Molecular Therapy, 2001, 3, 565-573.	8.2	20
101	Defective inhibition of B-cell proliferation by Wiskott-Aldrich syndrome protein-deficient regulatory T cells. Blood, 2011, 117, 6608-6611.	1.4	20
102	Platelets from WAS patients show an increased susceptibility to <i>ex vivo</i> phagocytosis. Platelets, 2013, 24, 288-296.	2.3	19
103	Adenosine Deaminase (ADA)–Deficient Severe Combined Immune Deficiency (SCID) in the US Immunodeficiency Network (USIDNet) Registry. Journal of Clinical Immunology, 2020, 40, 1124-1131.	3.8	19
104	Severe combined immune deficiencies due to defects of the common ? chain-JAK3 signaling pathway. Seminars in Immunopathology, 1998, 19, 401-415.	4.0	18
105	Use of a herpes thymidine kinase/neomycin phosphotransferase chimeric gene for metabolic suicide gene transfer. Cancer Gene Therapy, 2000, 7, 574-580.	4.6	17
106	In VivoCompetitive Studies between Normal and Common γ Chain-Defective Bone Marrow Cells: Implications for Gene Therapy. Human Gene Therapy, 2000, 11, 2051-2056.	2.7	17
107	Functional Interaction of Common γ-Chain and Growth Hormone Receptor Signaling Apparatus. Journal of Immunology, 2006, 177, 6889-6895.	0.8	17
108	Development of IgA nephropathy-like glomerulonephritis associated with Wiskott–Aldrich syndrome protein deficiency. Clinical Immunology, 2012, 142, 160-166.	3.2	17

#	Article	IF	CITATIONS
109	Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. Journal of Clinical Investigation, 2002, 109, 1261-1269.	8.2	16
110	Measurement of Proliferative Responses of Cultured Lymphocytes. Current Protocols in Immunology, 2008, 82, Unit 7.10.1-7.10.24.	3.6	15
111	Assessment of Immature Platelet Fraction in the Diagnosis of Wiskottââ,¬â€œAldrich Syndrome. Frontiers in Pediatrics, 2015, 3, 49.	1.9	15
112	Aberrant glycosylation of IgA in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Journal of Allergy and Clinical Immunology, 2013, 131, 587-590.e3.	2.9	14
113	Advances of gene therapy for primary immunodeficiencies. F1000Research, 2016, 5, 310.	1.6	14
114	Flow Cytometry Analysis of Adenosine Deaminase (ADA) Expression: A Simple and Reliable Tool for the Assessment of ADA-Deficient Patients Before and After Gene Therapy. Human Gene Therapy, 2002, 13, 425-432.	2.7	13
115	Mosaicism—Switch or Spectrum?. Science, 2010, 330, 46-47.	12.6	13
116	Somatic Mosaicism Caused by Monoallelic Reversion of a Mutation in T Cells of a Patient with ADA‧CID and the Effects of Enzyme Replacement Therapy on the Revertant Phenotype. Scandinavian Journal of Immunology, 2011, 74, 471-481.	2.7	13
117	Gene Therapy in Infants with Severe Combined Immunodeficiency. BioDrugs, 2002, 16, 229-239.	4.6	12
118	Lentiviral Gene Therapy with Autologous Hematopoietic Stem and Progenitor Cells (HSPCs) for the Treatment of Severe Combined Immune Deficiency Due to Adenosine Deaminase Deficiency (ADA-SCID): Results in an Expanded Cohort. Blood, 2019, 134, 3345-3345.	1.4	12
119	THE POTENTIAL FOR THERAPY OF IMMUNE DISORDERS WITH GENE THERAPY. Pediatric Clinics of North America, 2000, 47, 1389-1407.	1.8	11
120	Biosynthetic Ganciclovir Triphosphate: Its Isolation and Characterization from Ganciclovir-Treated Herpes Simplex Thymidine Kinase-Transduced Murine Cells. Biochemical and Biophysical Research Communications, 2001, 289, 525-530.	2.1	11
121	Retroviral-mediated gene transfer restores IL-12 and IL-23 signaling pathways in T cells from IL-12 receptor β1-deficient patients. Molecular Therapy, 2004, 9, 895-901.	8.2	11
122	Immune Responses to Gene-Modified T Cells. Current Gene Therapy, 2007, 7, 361-368.	2.0	11
123	Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency. Orphanet Journal of Rare Diseases, 2015, 10, 159.	2.7	10
124	In vitro functional correction of Hermansky–Pudlak Syndrome type-1 by lentiviral-mediated gene transfer. Molecular Genetics and Metabolism, 2015, 114, 62-65.	1.1	10
125	Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice. PLoS ONE, 2015, 10, e0139729.	2.5	10
126	Pharmacokinetics and organ distribution of N -methanocarbathymidine, a novel thymidine analog, in mice bearing tumors transduced with the herpes simplex thymidine kinase gene. Cancer Chemotherapy and Pharmacology, 2002, 50, 360-366.	2.3	8

#	Article	IF	CITATIONS
127	C-8. Immunological and Metabolic Correction After Lentiviral Vector Gene Therapy for ADA Deficiency. Molecular Therapy, 2015, 23, S102-S103.	8.2	8
128	Busulfan Pharmacokinetics in Adenosine Deaminase-Deficient Severe Combined Immunodeficiency Gene Therapy. Biology of Blood and Marrow Transplantation, 2020, 26, 1819-1827.	2.0	8
129	Intra-uterine growth restriction induced by maternal low-protein diet causes long-term alterations of thymic structure and function in adult male rat offspring. British Journal of Nutrition, 2020, 123, 892-900.	2.3	8
130	Severe combined immune deficiency. , 2020, , 153-205.		7
131	Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 725587.	4.8	7
132	A convenient method for positive selection of retroviral producing cells generating vectors devoid of selectable markers. Journal of Virological Methods, 2004, 118, 61-67.	2.1	6
133	Gene therapy for Wiskott-Aldrich syndrome: here to stay. Lancet Haematology,the, 2019, 6, e230-e231.	4.6	6
134	Immunodeficiency Due to Defects of Purine Metabolism. , 2013, , 188-230.		6
135	Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector. PLoS ONE, 2013, 8, e71594.	2.5	6
136	Platelets From WAS Patients Are More Susceptible Than Controls to Phagocytosis by Activated THP-1 Cells. Blood, 2011, 118, 2222-2222.	1.4	6
137	JAK3-DEFICIENT SEVERE COMBINED IMMUNODEFICIENCY. Immunology and Allergy Clinics of North America, 2000, 20, 97-111.	1.9	5
138	Gene therapy for immunodeficiency. Current Allergy and Asthma Reports, 2001, 1, 407-415.	5.3	5
139	Peptide library-based evaluation of T-cell receptor breadth detects defects in global and regulatory activation in human immunologic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8164-8169.	7.1	5
140	Detection of Reactive Oxygen Species Using MitoSOX and CellROX in Zebrafish. Bio-protocol, 2016, 6, .	0.4	5
141	Application of Molecular Analysis to Genetic Counseling in the Wiskott–Aldrich Syndrome (WAS). DNA and Cell Biology, 1993, 12, 645-649.	1.9	4
142	Gene therapy for primary immune deficiencies. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 497-501.	2.3	4
143	A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	4
144	Immune deficiency, autoimmune disease and intellectual disability: A pleiotropic disorder caused by biallelic variants in the <scp><i>TPP2</i></scp> gene. Clinical Genetics, 2021, 99, 780-788.	2.0	4

#	Article	IF	CITATIONS
145	Critical role of WASp in germinal center tolerance through regulation of B cell apoptosis and diversification. Cell Reports, 2022, 38, 110474.	6.4	4
146	THE USE OF GENE THERAPY FOR IMMUNODEFICIENCY DISEASE. Immunology and Allergy Clinics of North America, 1996, 16, 683-726.	1.9	3
147	Primary immunodeficiencies and the rheumatologist. Current Opinion in Rheumatology, 2003, 15, 413-416.	4.3	3
148	Gene therapy of primary immunodeficiencies. Seminars in Immunopathology, 1998, 19, 493-508.	4.0	2
149	The long terminal repeat negative control region is a critical element for insertional oncogenesis after gene transfer into hematopoietic progenitors with Moloney murine leukemia viral vectors. Gene Therapy, 2016, 23, 815-818.	4.5	2
150	Signaling networks in B cell development and related therapeutic strategies. Journal of Leukocyte Biology, 2022, 111, 877-891.	3.3	2
151	Comparative Results of Gene Therapy for Adenosine Deaminase Deficiency with or without PEG-ADA Withdrawal and Myelosuppressive Chemotherapy Blood, 2007, 110, 501-501.	1.4	2
152	Human Adenylate Kinase 2 Deficiency Causes a Profound Haematopoietic Defect Associated with Sensorineural Deafness. Blood, 2008, 112, lba-2-lba-2.	1.4	2
153	Wiskott-Aldrich Syndrome: A Retrospective Study on 575 Patients Analyzing the Impact of Splenectomy, Stem Cell Transplantation, or No Definitive Treatment on Frequency of Disease-Related Complications and Physician-Perceived Quality of Life. Blood, 2016, 128, 366-366.	1.4	2
154	Severe Combined Immunodeficiencies. , 2014, , 87-141.		1
155	Autologous Transplant/Gene Therapy for Adenosine Deaminase-Deficient Severe Combined Immune Deficiency. Biology of Blood and Marrow Transplantation, 2015, 21, S102.	2.0	1
156	30. Phase II Clinical Trial of Gene Therapy for Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA-SCID) Using a Î ³ -Retroviral Vector. Molecular Therapy, 2015, 23, S13-S14.	8.2	1
157	Identification of type I interferonopathies using blood interferon signature: the experience of a pediatric rheumatology center. Pediatric Rheumatology, 2015, 13, .	2.1	1
158	Reduced Number of Dense Bodies and Reduced Serotonin Content in Platelets of Patients with Wiskott-Aldrich Syndrome Blood, 2009, 114, 1321-1321.	1.4	1
159	Severe Combined Immunodeficiency and Combined Immunodeficiency Due to Cytokine Signaling Defects (IL2RG, JAK3, IL7R, IL2RA, JAK3 and STAT5B). , 2013, , 134-155.		1
160	Development of Autologous, Oligoclonal, Poorly Functioning T Lymphocytes in a Patient With Autosomal Recessive Severe Combined Immunodeficiency Caused by Defects of the Jak3 Tyrosine Kinase. Blood, 1998, 91, 949-955.	1.4	1
161	Common Variable Immunodeficiency in a Carrier of the ADA2 R169Q Variant: Coincidence or Causality?. Journal of Clinical Immunology, 2022, , 1.	3.8	1
162	Retroviral-Mediated Transfer andExpression of the Common Gamma Chain intoHuman Hematopoietic Progenitors. Acta Haematologica, 1999, 101, 106-110.	1.4	0

#	Article	IF	CITATIONS
163	Evidence That the Mouse 3′κLight Chain Enhancer Confers Position-Independent Transgene Expression in T- and B-Lineage Cells. Human Gene Therapy, 2003, 14, 1753-1764.	2.7	Ο
164	Molecular Basis of Severe Combined Immunodeficiency: Lessons from Cytokine Signaling Pathways. , 0, , 279-305.		0
165	240. Stable and Clinically Benign Clonal Dominance in an ADA-SCID Patient Treated With Retroviral Gene Therapy. Molecular Therapy, 2015, 23, S94.	8.2	0
166	Combined T Cell and B Cell Deficiency – SCID Forms: T â^' B +. , 2016, , 360-368.		0
167	280. Lentiviral-Mediated Gene Therapy Restores B Cell Homeostasis and Tolerance in Wiskott-Aldrich Syndrome Patients. Molecular Therapy, 2016, 24, S112.	8.2	0
168	Gene therapy for the treatment of adenosine deaminase-deficient severe combined immune deficiency. Expert Opinion on Orphan Drugs, 2017, 5, 477-485.	0.8	0
169	Jak3 and the Pathogenesis of Severe Combined Immunodeficiency. , 2003, , 623-636.		0
170	Gene transfer therapy of immunologic diseases. , 2008, , 1281-1292.		0
171	Dermatofibrosarcoma Protuberans in 3 Patients with ADA-SCID. Blood, 2008, 112, 4833-4833.	1.4	Ο
172	Comparison of Immortalization Potential of Gamma-Retroviral, Lentiviral and Foamy Virus Gene Transfer Vectors. Blood, 2011, 118, 3116-3116.	1.4	0
173	Characterization of AK2 Gene Function in Zebrafish Hematopoiesis. Blood, 2011, 118, 2185-2185.	1.4	Ο
174	Analysis of Risk and Mechanism of Insertional Oncogenesis After Gene Transfer Into Hematopoietic Progenitors with Integrating Viral Vectors. Blood, 2012, 120, 2049-2049.	1.4	0
175	Adenylate Kinase 2 Regulates Zebrafish Primitive and Definitive Hematopoiesis. Blood, 2012, 120, 1208-1208.	1.4	Ο
176	Negative Control Region Is a Critical Element Of Insertional Oncogenesis After Gene Transfer Into Hematopoietic Progenitors With Moloney Murine Leukemia Viruses. Blood, 2013, 122, 164-164.	1.4	0
177	AK2 Deficiency In Zebrafish Recapitulates Human Reticular Dysgenesis, An Autosomal Recessive Form Of Severe Combined Immunodeficiency. Blood, 2013, 122, 2416-2416.	1.4	О
178	Cation Leak in Red Blood Cells of Patients with Wiskott-Aldrich Syndrome Leads to Non-Immunologic Hemolysis. Blood, 2014, 124, 1338-1338.	1.4	0
179	What's the 'Skinny' on Microbiome? Interplay of Immune Cells, Microbes, and Skin Barrier in Health and Disease. Blood, 2014, 124, SCI-46-SCI-46.	1.4	0
180	Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. Journal of Cell Biology, 2015, 210, 2102OIA141.	5.2	0

#	Article	IF	CITATIONS
181	Der primä Immundefekt – Ein praktischer Leitfaden für den Kinderarzt. Paediatrica, 2022, 33, .	0.1	0
182	Immunodéficience primaire - guide pratique pour les pédiatres. Paediatrica, 2022, 33, .	0.0	0