Raquel Nieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6694581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do CMIP models capture long-term observed annual precipitation trends?. Climate Dynamics, 2022, 58, 2825-2842.	3.8	20
2	Amazonian Moisture Recycling Revisited Using WRF With Water Vapor Tracers. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	17
3	Moisture Sources for Precipitation Associated With Major Hurricanes During 2017 in the North Atlantic Basin. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	13
4	Where does the moisture for North Atlantic tropical cyclones come from?. Journal of Hydrometeorology, 2022, , .	1.9	5
5	Effects of Drought on Mortality in Macro Urban Areas of Brazil Between 2000 and 2019. GeoHealth, 2022, 6, e2021GH000534.	4.0	10
6	The importance of continental evaporation for precipitation in Colombia: A baseline combining observations from stable isotopes and modelling moisture trajectories. Hydrological Processes, 2022, 36, .	2.6	7
7	Drought effects on specific-cause mortality in Lisbon from 1983 to 2016: Risks assessment by gender and age groups. Science of the Total Environment, 2021, 751, 142332.	8.0	17
8	Influence of the Madden-Julian Oscillation on moisture transport by the Caribbean Low Level Jet during the Midsummer Drought in Mexico. Atmospheric Research, 2021, 248, 105243.	4.1	10
9	Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere, 2021, 12, 155.	2.3	10
10	European West Coast atmospheric rivers: A scale to characterize strength and impacts. Weather and Climate Extremes, 2021, 31, 100305.	4.1	17
11	The Combined Effects of SST and the North Atlantic Subtropical High-Pressure System on the Atlantic Basin Tropical Cyclone Interannual Variability. Atmosphere, 2021, 12, 329.	2.3	6
12	Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico). Atmosphere, 2021, 12, 368.	2.3	1
13	Assessing the Moisture Transports Associated With Nocturnal Low-Level Jets in Continental South America. Frontiers in Environmental Science, 2021, 9, .	3.3	7
14	Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe. Atmosphere, 2021, 12, 509.	2.3	6
15	A data base of contributions of major oceanic and terrestrial moisture sources on continental daily extreme precipitation. Data in Brief, 2021, 35, 106830.	1.0	2
16	Tracking the origins of moisture over Vietnam: The role of moisture sources and atmospheric drivers on seasonal hydroclimatic conditions. International Journal of Climatology, 2021, 41, 5843-5861.	3.5	4
17	Consecutive Extratropical Cyclones Daniel, Elsa and Fabien, and Their Impact on the Hydrological Cycle of Mainland Portugal. Water (Switzerland), 2021, 13, 1476.	2.7	10
18	Water Budgets of Tropical Cyclones through a Lagrangian Approach: A Case of Study of Hurricane Irma (2017). Environmental Sciences Proceedings, 2021, 8, .	0.3	0

#	Article	IF	CITATIONS
19	Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environmental Sciences Proceedings, 2021, 8, 19.	0.3	0
20	Oceanic versus terrestrial origin of El Niño Southern Oscillation–associated continental precipitation anomalies. Annals of the New York Academy of Sciences, 2021, 1504, 202-214.	3.8	6
21	Space-Time Assessment of Extreme Precipitation in Cuba between 1980 and 2019 from Multi-Source Weighted-Ensemble Precipitation Dataset. Atmosphere, 2021, 12, 995.	2.3	4
22	The residence time of water vapour in the atmosphere. Nature Reviews Earth & Environment, 2021, 2, 558-569.	29.7	41
23	Comparative climatology of outer tropical cyclone size using radial wind profiles. Weather and Climate Extremes, 2021, 33, 100366.	4.1	13
24	Atmospheric river, a term encompassing different meteorological patterns. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1558.	6.5	12
25	Spatio-Temporal Assessment of Meteorological Drought in Puerto Rico between 1950 and 2019. Environmental Sciences Proceedings, 2021, 8, 40.	0.3	1
26	Affectation and Rainfall Contribution of Tropical Cyclones in Puerto Rico from 1980 to 2016. Environmental Sciences Proceedings, 2021, 4, 30.	0.3	1
27	Effects of droughts on health: Diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Science of the Total Environment, 2020, 703, 134912.	8.0	34
28	Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Science Reviews, 2020, 201, 103070.	9.1	71
29	Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric Rivers. Nature Communications, 2020, 11, 5082.	12.8	39
30	Short-term effects of drought on daily mortality in Spain from 2000 to 2009. Environmental Research, 2020, 183, 109200.	7.5	22
31	Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis. International Journal of Environmental Research and Public Health, 2020, 17, 6114.	2.6	11
32	The growing importance of oceanic moisture sources for continental precipitation. Npj Climate and Atmospheric Science, 2020, 3, .	6.8	31
33	Atmospheric moisture sources associated with extreme precipitation during the peak precipitation month. Weather and Climate Extremes, 2020, 30, 100289.	4.1	15
34	The Role of Tropical Cyclones on the Total Precipitation in Cuba during the Hurricane Season from 1980 to 2016. Atmosphere, 2020, 11, 1156.	2.3	7
35	Trends and Extremes of Drought Episodes in Vietnam Sub-Regions during 1980–2017 at Different Timescales. Water (Switzerland), 2020, 12, 813.	2.7	22
36	Changes in South American hydroclimate under projected Amazonian deforestation. Annals of the New York Academy of Sciences, 2020, 1472, 104-122.	3.8	27

#	Article	IF	CITATIONS
37	Hydrometeorological droughts in the Miño–Limia–Sil hydrographic demarcation (northwesternÂlberian Peninsula): the role of atmospheric drivers. Natural Hazards and Earth System Sciences, 2020, 20, 1805-1832.	3.6	5
38	Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environmental Sciences Proceedings, 2020, 4, .	0.3	1
39	On the Connection between Atmospheric Moisture Transport and Dry Conditions in Rainfall Climatological Zones of the Niger River Basin. Water (Switzerland), 2019, 11, 622.	2.7	8
40	Contribution of the main moisture sources to precipitation during extreme peak precipitation months. Advances in Water Resources, 2019, 131, 103385.	3.8	27
41	Characterization of Moisture Sources for Austral Seas and Relationship with Sea Ice Concentration. Atmosphere, 2019, 10, 627.	2.3	2
42	A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks. Scientific Data, 2019, 6, 59.	5.3	38
43	Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. Science of the Total Environment, 2019, 662, 121-133.	8.0	23
44	Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmospheric Research, 2019, 229, 39-59.	4.1	28
45	The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension. Earth System Dynamics, 2019, 10, 121-133.	7.1	8
46	Atmospheric moisture transport and the decline in Arctic Sea ice. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e588.	8.1	22
47	On the assessment of the moisture transport by the Great Plains low-level jet. Earth System Dynamics, 2019, 10, 107-119.	7.1	28
48	The European 2016/17 Drought. Journal of Climate, 2019, 32, 3169-3187.	3.2	86
49	Linking Anomalous Moisture Transport And Drought Episodes in the IPCC Reference Regions. Bulletin of the American Meteorological Society, 2019, 100, 1481-1498.	3.3	33
50	Climatological moisture sources for the Western North American Monsoon through a Lagrangian approach: their influence on precipitation intensity. Earth System Dynamics, 2019, 10, 59-72.	7.1	14
51	Atmospheric Rivers over the Arctic: Lagrangian Characterisation of Their Moisture Sources. Water (Switzerland), 2019, 11, 41.	2.7	7
52	From Amazonia to southern Africa: atmospheric moisture transport through lowâ€level jets and atmospheric rivers. Annals of the New York Academy of Sciences, 2019, 1436, 217-230.	3.8	37
53	Influencia de los principales modos anulares hemisféricos y El Niño-Oscilación del Sur (ENOS) en las fuentes de humedad globales de Mesoamérica. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2019, 43, 746-763.	0.2	1
54	Completeness of radiosonde humidity observations based on the Integrated Clobal Radiosonde Archive. Earth System Science Data, 2019, 11, 603-627.	9.9	25

#	Article	IF	CITATIONS
55	The climatology of dust events over the European continent using data of the BSC-DREAM8b model. Atmospheric Research, 2018, 209, 144-162.	4.1	8
56	A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes. Journal of Hydrology, 2018, 560, 382-395.	5.4	20
57	Moisture origin and transport processes in Colombia, northern South America. Climate Dynamics, 2018, 50, 971-990.	3.8	69
58	Recent changes in monthly surface air temperature over Peru, 1964–2014. International Journal of Climatology, 2018, 38, 283-306.	3.5	32
59	A comparison of temporal variability of observed and modelâ€based pan evaporation over Uruguay (1973–2014). International Journal of Climatology, 2018, 38, 337-350.	3.5	22
60	Mapping seasonal and annual extreme precipitation over the Peruvian Andes. International Journal of Climatology, 2018, 38, 5459-5475.	3.5	8
61	The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran's Hydro-Climatology. Water (Switzerland), 2018, 10, 1550.	2.7	17
62	Recent changes of relative humidity: regional connections with land and ocean processes. Earth System Dynamics, 2018, 9, 915-937.	7.1	75
63	Variations in Moisture Supply from the Mediterranean Sea during Meteorological Drought Episodes over Central Europe. Atmosphere, 2018, 9, 278.	2.3	15
64	A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth System Dynamics, 2018, 9, 611-625.	7.1	24
65	Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin. Water (Switzerland), 2018, 10, 1182.	2.7	8
66	Short-term effect of tropospheric ozone on daily mortality in Spain. Atmospheric Environment, 2018, 187, 107-116.	4.1	44
67	Anomalies in Moisture Supply during the 2003 Drought Event in Europe: A Lagrangian Analysis. Water (Switzerland), 2018, 10, 467.	2.7	19
68	The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water (Switzerland), 2018, 10, 519.	2.7	19
69	The Atmospheric Branch of the Hydrological Cycle over the Negro and Madeira River Basins in the Amazon Region. Water (Switzerland), 2018, 10, 738.	2.7	23
70	Moisture transport from the Arctic: a characterization from a Lagrangian perspective. Cuadernos De Investigacion Geografica, 2018, 44, 659-673.	1.1	3
71	The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 2017, 48, 405-427.	3.8	78
72	Drought episodes in the climatological sinks of the Mediterranean moisture source: The role of moisture transport. Global and Planetary Change, 2017, 151, 4-14.	3.5	30

#	Article	IF	CITATIONS
73	Wet Spells and Associated Moisture Sources Anomalies across Danube River Basin. Water (Switzerland), 2017, 9, 615.	2.7	10
74	Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport. Atmosphere, 2017, 8, 32.	2.3	9
75	The Niger River Basin Moisture Sources: A Lagrangian Analysis. Atmosphere, 2017, 8, 38.	2.3	10
76	Moisture Transport Anomalies over the Danube River Basin during Two Drought Events: A Lagrangian Analysis. Atmosphere, 2017, 8, 193.	2.3	18
77	The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins. Hydrology and Earth System Sciences, 2017, 21, 6379-6399.	4.9	11
78	A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics, 2017, 8, 653-675.	7.1	52
79	Tracking the Origin of Moisture over the Danube River Basin Using a Lagrangian Approach. Atmosphere, 2016, 7, 162.	2.3	23
80	Atmospheric rivers moisture sources from a Lagrangian perspective. Earth System Dynamics, 2016, 7, 371-384.	7.1	65
81	A Lagrangian analysis of the present-day sources of moisture for major ice-core sites. Earth System Dynamics, 2016, 7, 549-558.	7.1	14
82	Contribution of water-limited ecoregions to their own supply of rainfall. Environmental Research Letters, 2016, 11, 124007.	5.2	47
83	Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 2016, 41, 117-141.	13.4	177
84	Moisture transport into the Arctic: Sourceâ€receptor relationships and the roles of atmospheric circulation and evaporation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,493.	3.3	40
85	The Westerly Index as complementary indicator of the North Atlantic oscillation in explaining drought variability across Europe. Climate Dynamics, 2016, 47, 845-863.	3.8	36
86	Impact of Euro-Atlantic blocking patterns in Iberia precipitation using a novel high resolution dataset. Climate Dynamics, 2016, 46, 2573-2591.	3.8	23
87	A Lagrangian approach for investigating anomalies in the moisture transport during drought episodes. Cuadernos De Investigacion Geografica, 2016, 42, 113-125.	1.1	15
88	Moisture contribution of the Atlantic Warm Pool to precipitation: a Lagrangian analysis. Frontiers in Environmental Science, 2015, 3, .	3.3	9
89	Atmospheric moisture transport: the bridge between ocean evaporation and Arctic ice melting. Earth System Dynamics, 2015, 6, 583-589.	7.1	21
90	Arctic moisture source for Eurasian snow cover variations in autumn. Environmental Research Letters, 2015, 10, 054015.	5.2	73

6

#	Article	IF	CITATIONS
91	The modulation of oceanic moisture transport by the hemispheric annular modes. Frontiers in Earth Science, 2014, 2, .	1.8	8
92	The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrology and Earth System Sciences, 2014, 18, 2577-2598.	4.9	116
93	Biogenic amines in wine: Individual and competitive adsorption on a modified zirconium phosphate. Microporous and Mesoporous Materials, 2014, 197, 130-139.	4.4	42
94	A catalog of moisture sources for continental climatic regions. Water Resources Research, 2014, 50, 5322-5328.	4.2	25
95	Atmospheric rivers: a mini-review. Frontiers in Earth Science, 2014, 2, .	1.8	200
96	The role of the ENSO cycle in the modulation of moisture transport from major oceanic moisture sources. Water Resources Research, 2014, 50, 1046-1058.	4.2	29
97	Estimating the Temporal Domain when the Discount of the Net Evaporation Term Affects the Resulting Net Precipitation Pattern in the Moisture Budget Using a 3-D Lagrangian Approach. PLoS ONE, 2014, 9, e99046.	2.5	6
98	Past and Current Climate Changes in the Mediterranean Region. Advances in Global Change Research, 2013, , 9-51.	1.6	9
99	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
100	Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophysical Research Letters, 2013, 40, 1443-1450.	4.0	87
101	Explaining Extreme Events of 2012 from a Climate Perspective. Bulletin of the American Meteorological Society, 2013, 94, S1-S74.	3.3	229
102	Ocean Evaporation and Precipitation. , 2013, , 291-318.		1
103	Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts. , 2012, , 347-417.		25
104	Oceanic and terrestrial sources of continental precipitation. Reviews of Geophysics, 2012, 50, .	23.0	384
105	Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Applied Geography, 2012, 34, 471-486.	3.7	127
106	Ocean ocean/oceanic Evaporation ocean/oceanic evaporation and Precipitation ocean/oceanic precipitation. , 2012, , 7244-7263.		0
107	On the contribution of the Tropical Western Hemisphere Warm Pool source of moisture to the Northern Hemisphere precipitation through a Lagrangian approach. Journal of Geophysical Research, 2011, 116, .	3.3	37
108	A close look at oceanic sources of continental precipitation. Eos, 2011, 92, 193-194.	0.1	15

#	Article	IF	CITATIONS
109	A multiscalar global evaluation of the impact of ENSO on droughts. Journal of Geophysical Research, 2011, 116, .	3.3	120
110	A Lagrangian analysis of the variation in moisture sources related to drier and wetter conditions in regions around the Mediterranean Basin. Natural Hazards and Earth System Sciences, 2011, 11, 2307-2320.	3.6	33
111	Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Natural Hazards and Earth System Sciences, 2011, 11, 33-51.	3.6	239
112	The state of climate in NW Iberia. Climate Research, 2011, 48, 109-144.	1.1	77
113	Characterization of the atmospheric component of the winter hydrological cycle in the Galicia/North Portugal Euro-region: a Lagrangian approach. Climate Research, 2011, 48, 193-201.	1.1	3
114	Effects of warming processes on droughts and water resources in the NW Iberian ÂPeninsula (1930â^'2006). Climate Research, 2011, 48, 203-212.	1.1	72
115	Sources of moisture for China and their variations during drier and Âwetter conditions in 2000â^'2004: a Lagrangian approach. Climate Research, 2011, 50, 215-225.	1.1	85
116	Where Does the Iberian Peninsula Moisture Come From? An Answer Based on a Lagrangian Approach. Journal of Hydrometeorology, 2010, 11, 421-436.	1.9	111
117	Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique. Journal of Geophysical Research, 2010, 115, .	3.3	81
118	Climatological features of cutoff low systems in the Southern Hemisphere. Journal of Geophysical Research, 2010, 115, .	3.3	48
119	On the origin of continental precipitation. Geophysical Research Letters, 2010, 37, .	4.0	306
120	Correction to "Moisture sources for Central America: Identification of moisture sources using a Lagrangian analysis technique― Journal of Geophysical Research, 2010, 115, .	3.3	4
121	A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons. PLoS ONE, 2010, 5, e11205.	2.5	28
122	Major sources of moisture for Antarctic ice-core sites identified through a Lagrangian approach. Climate Research, 2010, 41, 45-49.	1.1	9
123	Stability of the seasonal distribution of precipitation in the Mediterranean region: Observations since 1950 and projections for the 21st century. Geophysical Research Letters, 2009, 36, .	4.0	46
124	The Estimation of Probable Maximum Precipitation. Annals of the New York Academy of Sciences, 2008, 1146, 291-302.	3.8	26
125	Identification and Climatology of Cutâ€off Lows near the Tropopause. Annals of the New York Academy of Sciences, 2008, 1146, 256-290.	3.8	63
126	A Climatology Based on Reanalysis of Baroclinic Developmental Regions in the Extratropical Northern Hemisphere. Annals of the New York Academy of Sciences, 2008, 1146, 235-255.	3.8	14

#	Article	IF	CITATIONS
127	A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. Journal of Geophysical Research, 2008, 113, .	3.3	110
128	Basis for a Rainfall Estimation Technique Using IR–VIS Cloud Classification and Parameters over the Life Cycle of Mesoscale Convective Systems. Journal of Applied Meteorology and Climatology, 2008, 47, 1500-1517.	1.5	5
129	Dynamic identification of moisture sources in the Orinoco basin in equatorial South America. Hydrological Sciences Journal, 2008, 53, 602-617.	2.6	45
130	Potential Outflow Pathways for Iberian Atmospheric Middle-Lived Pollution. The Open Atmospheric Science Journal, 2008, 2, 18-22.	0.5	1
131	Contributions to the moisture budget of airmasses over Iceland. Meteorologische Zeitschrift, 2007, 16, 37-44.	1.0	27
132	Global statistics of multiple tropopauses from the IGRA database. Geophysical Research Letters, 2007, 34, .	4.0	23
133	A new diagnostic of stratospheric polar vortices. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1797-1812.	1.6	8
134	The role of the solar cycle in the relationship between the North Atlantic Oscillation and Northern Hemisphere surface temperatures. Advances in Atmospheric Sciences, 2007, 24, 191-198.	4.3	7
135	Decay of the Northern Hemisphere stratospheric polar vortex and the occurrence of cut-off low systems: An exploratory study. Meteorology and Atmospheric Physics, 2007, 96, 21-28.	2.0	6
136	Interannual variability of cut-off low systems over the European sector: The role of blocking and the Northern Hemisphere circulation modes. Meteorology and Atmospheric Physics, 2007, 96, 85-101.	2.0	34
137	Analysis of the precipitation and cloudiness associated with COLs occurrence in the Iberian Peninsula. Meteorology and Atmospheric Physics, 2007, 96, 103-119.	2.0	25
138	Cloud cover analysis associated to cut-off low-pressure systems over Europe using Meteosat Imagery. Meteorology and Atmospheric Physics, 2007, 96, 141-157.	2.0	6
139	A Lagrangian identification of major sources of Sahel moisture. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	105
140	Atmospheric Transport Towards the Iberian Peninsula in the 3- to 10-Day Range. Scientific World Journal, The, 2006, 6, 1041-1047.	2.1	5
141	Study of troposphere–stratosphere coupling through the Northern Annular Mode. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 989-998.	1.6	3
142	Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data. Die Naturwissenschaften, 2006, 93, 603-609.	1.6	19
143	Solar influence on Northern Annular Mode spatial structure and QBO modulation. Advances in Space Research, 2006, 37, 1635-1639.	2.6	2
144	Interannual Variability of the Annual Cycle of Temperature over Northern Africa. Studia Geophysica Et Geodaetica, 2005, 49, 141-151.	0.5	5

#	Article	IF	CITATIONS
145	Climatological Features of Cutoff Low Systems in the Northern Hemisphere. Journal of Climate, 2005, 18, 3085-3103.	3.2	151
146	Two Approaches for Determining Extreme Years of Global Atmospheric Temperature. Studia Geophysica Et Geodaetica, 2004, 48, 447-458.	0.5	0
147	The Use of Equivalent Temperature to Analyse Climate Variability. Studia Geophysica Et Geodaetica, 2004, 48, 459-468.	0.5	4
148	Impact of the extratropical dynamical modes upon troposphere temperature using an approach based on advection of temperature. International Journal of Climatology, 2003, 23, 399-404.	3.5	0
149	Changes in the relationship NAO–Northern hemisphere temperature due to solar activity. Earth and Planetary Science Letters, 2003, 206, 15-20.	4.4	47
150	Imprints of the North Atlantic Oscillation on four unusual atmospheric parameters. Earth and Planetary Science Letters, 2002, 202, 677-692.	4.4	3
151	Moisture Sources and Large-Scale Dynamics Associated With a Flash Flood Event. Geophysical Monograph Series, 0, , 111-126.	0.1	30
152	Analysis of Dry and Wet Episodes in Eastern South America during 1980-2018 Using SPEI. , 0, , .		1
153	Short Communication: Atmospheric moisture transport, the bridge between ocean evaporation and Arctic ice melting. , 0, , .		0
154	Analysis of Changes on Moisture Sources Contributions for Arctic Region in a FutureClimate Scenario Using GFDL/CM3 Model. , 0, , .		0
155	An Analysis of the Water Cycle in the Sahel through a Lagrangian Perspective. , 0, , .		0
156	Tracking the Origin of Moisture (and Moisture for Precipitation) over the Danube River Basin through a Lagrangian Approach . , 0, , .		0
157	The Niger River Basin Moisture Sources. A Lagrangian Analysis. , 0, , .		0
158	Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport. , 0, , .		0
159	Precipitation Moisture Sources of Ethiopian River Basins and Their Role During Drought Conditions. Frontiers in Earth Science, 0, 10, .	1.8	3