
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6692218/publications.pdf Version: 2024-02-01

HIIIIN WANC

#	Article	IF	CITATIONS
1	Future changes in precipitation extremes across China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 635-651.	3.5	53
2	Predicting climate anomalies: A real challenge. Atmospheric and Oceanic Science Letters, 2022, 15, 100115.	1.3	12
3	Why super sandstorm 2021 in North China?. National Science Review, 2022, 9, nwab165.	9.5	69
4	Increased Interannual Variability in the Dipole Mode of Extreme High-Temperature Events over East China during Summer after the Early 1990s and Associated Mechanisms. Journal of Climate, 2022, 35, 1347-1364.	3.2	13
5	Deciphering the variations and mechanisms of the westerly jets across the Northern Hemisphere during the Last Interglacial based on PMIP4 models. Climate Dynamics, 2022, 58, 3279-3295.	3.8	2
6	Detectable Human Influence on Changes in Precipitation Extremes Across China. Earth's Future, 2022, 10, .	6.3	17
7	Interannual Variations in Summer Extreme Precipitation Frequency over Northern Asia and Related Atmospheric Circulation Patterns. Journal of Hydrometeorology, 2022, 23, 619-636.	1.9	5
8	A Longâ€Lasting Precipitation Deficit in South China During Autumnâ€Winter 2020/2021: Combined Effect of ENSO and Arctic Sea Ice. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	12
9	Possible Relationship between January "Warm Arctic–Cold Eurasia―and February Haze in North China. Journal of Climate, 2022, 35, 4115-4130.	3.2	2
10	Increase of Future Summer Rainfall in the Middle and Lower Reach of the Yangtze River Basin Projected With a Nonhomogeneous Hidden Markov Model. Geophysical Research Letters, 2022, 49, .	4.0	1
11	In-Phase Variations of Spring and Summer Droughts over Northeast China and Their Relationship with the North Atlantic Oscillation. Journal of Climate, 2022, 35, 6923-6937.	3.2	8
12	Large shift of the Pacific Walker Circulation across the Cenozoic. National Science Review, 2021, 8, nwaa101.	9.5	12
13	Interannual variations of monthly precipitation and associated mechanisms over the Three River Source region in China in winter months. International Journal of Climatology, 2021, 41, 2209-2225.	3.5	6
14	Monthly Variations of Atmospheric Circulations Associated with Haze Pollution in the Yangtze River Delta and North China. Advances in Atmospheric Sciences, 2021, 38, 569-580.	4.3	9
15	Interannual variation in summer extreme precipitation over Southwestern China and the possible associated mechanisms. International Journal of Climatology, 2021, 41, 3425-3438.	3.5	15
16	Dynamic Control of the Dominant Modes of Interannual Variability of Snowfall Frequency in China. Journal of Climate, 2021, 34, 2777-2790.	3.2	10
17	What induces the interdecadal shift of the dipole patterns of summer precipitation trends over the Tibetan Plateau?. International Journal of Climatology, 2021, 41, 5159-5177.	3.5	18
18	Outâ€ofâ€Phase Decadal Change in Drought Over Northeast China Between Early Spring and Late Summer Around 2000 and Its Linkage to the Atlantic Sea Surface Temperature. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034048.	3.3	9

#	Article	IF	CITATIONS
19	Divergent Evolution of Glaciation Across Highâ€Mountain Asia During the Last Four Glacialâ€Interglacial Cycles. Geophysical Research Letters, 2021, 48, e2021GL092411.	4.0	10
20	Influence of Strong Tropical Volcanic Eruptions on Daily Temperature and Precipitation Extremes Across the Globe. Journal of Meteorological Research, 2021, 35, 428-443.	2.4	5
21	Possible impacts of December Laptev sea ice on Indian Ocean Dipole conditions during spring. Journal of Climate, 2021, , 1-45.	3.2	7
22	Dominant Modes of Interannual Variability in Atmospheric Water Vapor Content over East Asia during Winter and Their Associated Mechanisms. Advances in Atmospheric Sciences, 2021, 38, 1706-1722.	4.3	4
23	Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia. International Journal of Climatology, 2020, 40, 706-722.	3.5	16
24	Solar-wind–magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate. National Science Review, 2020, 7, 141-148.	9.5	4
25	Dominant modes of interannual variability of extreme highâ€ŧemperature events in eastern China during summer and associated mechanisms. International Journal of Climatology, 2020, 40, 841-857.	3.5	21
26	Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snowâ€albedo feedback. International Journal of Climatology, 2020, 40, 1644-1655.	3.5	31
27	Variation of the summer Asian westerly jet over the last millennium based on the PMIP3 simulations. Holocene, 2020, 30, 332-343.	1.7	7
28	Wave-Breaking Features of Blocking over Central Siberia and Its Impacts on the Precipitation Trend over Southeastern Lake Baikal. Advances in Atmospheric Sciences, 2020, 37, 75-89.	4.3	7
29	Changes in Lake Area in the Inner Mongolian Plateau under Climate Change: The Role of the Atlantic Multidecadal Oscillation and Arctic Sea Ice. Journal of Climate, 2020, 33, 1335-1349.	3.2	8
30	A Detectable Anthropogenic Shift Toward Intensified Summer Hot Drought Events Over Northeastern China. Earth and Space Science, 2020, 7, e2019EA000836.	2.6	25
31	Description and Climate Simulation Performance of CASâ€ESM Version 2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002210.	3.8	59
32	Interdecadal Variations in Extreme High–Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation. Atmosphere, 2020, 11, 829.	2.3	14
33	Interdecadal Variation and Causes of Drought in Northeast China in Recent Decades. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032069.	3.3	14
34	Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean. Atmosphere, 2020, 11, 1106.	2.3	1
35	Intensification of the Atlantic Multidecadal Variability Since 1870: Implications and Possible Causes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030977.	3.3	8
36	WRF-Chem Simulation of Winter Visibility in Jiangsu, China, and the Application of a Neural Network Algorithm. Atmosphere, 2020, 11, 520.	2.3	7

#	Article	IF	CITATIONS
37	A Possible Approach for Decadal Prediction of the PDO. Journal of Meteorological Research, 2020, 34, 63-72.	2.4	2
38	The PMIP3 Simulated Climate Changes over Arid Central Asia during the Midâ€Holocene and Last Glacial Maximum. Acta Geologica Sinica, 2020, 94, 725-742.	1.4	9
39	Is the Regional Precipitation Predictable in Decadal Scale? A Possible Approach for the Decadal Prediction of the Summer Precipitation Over North China. Earth and Space Science, 2020, 7, e2019EA000986.	2.6	6
40	Relationship between the onset date of the Meiyu and the South Asian anticyclone in April and the related mechanisms. Climate Dynamics, 2019, 52, 209-226.	3.8	45
41	Evolution of tropical cyclone genesis regions during the Cenozoic era. Nature Communications, 2019, 10, 3076.	12.8	13
42	East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EASTâ€AIR _{CPC}). Journal of Geophysical Research D: Atmospheres, 2019, 124, 13026-13054.	3.3	175
43	Springtime Convective Quasi-Biweekly Oscillation and Interannual Variation of Its Intensity over the South China Sea and Western North Pacific. Journal of Meteorological Research, 2019, 33, 323-335.	2.4	1
44	Verification and Improvement of the Ability of CFSv2 to Predict the Antarctic Oscillation in Boreal Spring. Advances in Atmospheric Sciences, 2019, 36, 292-302.	4.3	11
45	Projection of Landslides in China during the 21st Century under the RCP8.5 Scenario. Journal of Meteorological Research, 2019, 33, 138-148.	2.4	9
46	Climatic Condition and Synoptic Regimes of Two Intense Snowfall Events in Eastern China and Implications for Climate Variability. Journal of Geophysical Research D: Atmospheres, 2019, 124, 926-941.	3.3	29
47	Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High. Advances in Atmospheric Sciences, 2019, 36, 173-188.	4.3	30
48	Unstable relationship between the Arctic Oscillation and East Asian jet stream in winter and possible mechanisms. Theoretical and Applied Climatology, 2019, 135, 13-27.	2.8	5
49	Pacific multiâ€decadal oscillation modulates the effect of Arctic oscillation and El Niño southern oscillation on the East Asian winter monsoon. International Journal of Climatology, 2018, 38, 2808-2818.	3.5	11
50	Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism. Advances in Atmospheric Sciences, 2018, 35, 645-658.	4.3	8
51	Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea. Climate Dynamics, 2018, 51, 4439-4450.	3.8	46
52	Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes. Climate Dynamics, 2018, 50, 2121-2136.	3.8	13
53	Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dynamics, 2018, 51, 2433-2453.	3.8	25
54	Numerical simulation on the southern flood and northern drought in summer 2014 over Eastern China. Theoretical and Applied Climatology, 2018, 134, 1287-1299.	2.8	6

#	Article	IF	CITATIONS
55	Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China. Climate Dynamics, 2018, 51, 4065-4076.	3.8	38
56	Precipitation anomalies in the Panâ€Asian monsoon region during El Niño decaying summer 2016. International Journal of Climatology, 2018, 38, 3618-3632.	3.5	8
57	Future precipitation changes over China under 1.5â€ [°] °C and 2.0â€ [°] °C global warming targets by using CORDEX regional climate models. Science of the Total Environment, 2018, 640-641, 543-554.	8.0	70
58	Influence of Low-frequency Solar Forcing on the East Asian Winter Monsoon Based on HadCM3 and Observations. Advances in Atmospheric Sciences, 2018, 35, 1205-1215.	4.3	7
59	Climate Constraints on Glaciation Over Highâ€Mountain Asia During the Last Glacial Maximum. Geophysical Research Letters, 2018, 45, 9024-9033.	4.0	29
60	Estimation of sampling error uncertainties in observed surface air temperature change in China. Theoretical and Applied Climatology, 2017, 129, 1133-1144.	2.8	5
61	Interdecadal change between the Arctic Oscillation and East Asian climate during 1900–2015 winters. International Journal of Climatology, 2017, 37, 4791-4802.	3.5	19
62	Stratospheric precursor of non-uniform variation in early spring surface temperature over Eurasia. Journal of Meteorological Research, 2017, 31, 389-396.	2.4	2
63	Influence of October Eurasian snow on winter temperature over Northeast China. Advances in Atmospheric Sciences, 2017, 34, 116-126.	4.3	9
64	Simulated Historical (1901–2010) Changes in the Permafrost Extent and Active Layer Thickness in the Northern Hemisphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,285.	3.3	38
65	Preface to the special issue on the "Forecast and Evaluation of Meteorological Disasters―(FEMD). Advances in Atmospheric Sciences, 2017, 34, 127-127.	4.3	2
66	Connection between the Silk Road Pattern in July and the following January temperature over East Asia. Journal of Meteorological Research, 2017, 31, 378-388.	2.4	4
67	Interdecadal variations of the South Asian summer monsoon circulation variability and the associated sea surface temperatures on interannual scales. Advances in Atmospheric Sciences, 2017, 34, 816-832.	4.3	5
68	A trend towards a stable warm and windless state of the surface weather conditions in northern and northeastern China during 1961–2014. Advances in Atmospheric Sciences, 2017, 34, 713-726.	4.3	14
69	Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective. Climate Dynamics, 2017, 49, 1631-1650.	3.8	18
70	Sensitivity of Historical Simulation of the Permafrost to Different Atmospheric Forcing Data Sets from 1979 to 2009. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,269.	3.3	21
71	Effects of anthropogenic activity emerging as intensified extreme precipitation over China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6899-6914.	3.3	47
72	Assessment of the response of the East Asian winter monsoon to <scp>ENSO</scp> â€like <scp>SSTAs</scp> in three U.S. <scp>CLIVAR</scp> Project models. International Journal of Climatology, 2016, 36, 847-866.	3.5	11

#	Article	IF	CITATIONS
73	Linkage between the East Asian January temperature extremes and the preceding Arctic Oscillation. International Journal of Climatology, 2016, 36, 1026-1032.	3.5	32
74	Changes in clustered extreme precipitation events in South China and associated atmospheric circulations. International Journal of Climatology, 2016, 36, 3226-3236.	3.5	20
75	Will the Tibetan Plateau warming depend on elevation in the future?. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3969-3978.	3.3	75
76	CMIP5 permafrost degradation projection:A comparison among different regions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4499-4517.	3.3	106
77	Investigating uncertainty in the simulation of the Antarctic ice sheet during the midâ€Piacenzian. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1559-1574.	3.3	11
78	Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period. Proceedings of the United States of America, 2016, 113, 12963-12967.	7.1	39
79	Comparison of a very-fine-resolution GCM with RCM dynamical downscaling in simulating climate in China. Advances in Atmospheric Sciences, 2016, 33, 559-570.	4.3	41
80	Atmospheric response to the autumn sea-ice free Arctic and its detectability. Climate Dynamics, 2016, 46, 2051-2066.	3.8	12
81	Will the western Pacific subtropical high constantly intensify in the future?. Climate Dynamics, 2016, 47, 567-577.	3.8	21
82	Asymmetry in the response of central Eurasian winter temperature to AMO. Climate Dynamics, 2016, 47, 2139-2154.	3.8	16
83	The relationship between the subtropical Western Pacific <scp>SST</scp> and haze over Northâ€Central North China Plain. International Journal of Climatology, 2016, 36, 3479-3491.	3.5	59
84	New approaches for the skillful prediction of the winter North Atlantic Oscillation based on coupled dynamic climate models. International Journal of Climatology, 2016, 36, 82-94.	3.5	22
85	Haze Days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5895-5909.	3.3	250
86	Analysis of the major atmospheric moisture sources affecting three sub-regions of East China. International Journal of Climatology, 2015, 35, 2243-2257.	3.5	85
87	Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s' shift in East China summer rainfall. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8817-8827.	3.3	106
88	The North China/Northeastern Asia Severe Summer Drought in 2014. Journal of Climate, 2015, 28, 6667-6681.	3.2	144
89	Potential impact of future climate change on crop yield in northeastern China. Advances in Atmospheric Sciences, 2015, 32, 889-897.	4.3	23
90	Recent changes in summer precipitation in Northeast China and the background circulation. International Journal of Climatology, 2015, 35, 4210-4219.	3.5	79

#	Article	IF	CITATIONS
91	Seasonal prediction systems based on <scp>CCSM3</scp> and their evaluation. International Journal of Climatology, 2015, 35, 4681-4694.	3.5	6
92	Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific. International Journal of Climatology, 2015, 35, 3353-3361.	3.5	26
93	An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Panâ€Asian monsoon region. International Journal of Climatology, 2015, 35, 3770-3780.	3.5	22
94	Simulated warm periods of climate over China during the last two millennia: The Suiâ€Tang warm period versus the Songâ€Yuan warm period. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2229-2241.	3.3	15
95	Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Climate Dynamics, 2015, 44, 2703-2722.	3.8	52
96	A review of seasonal climate prediction research in China. Advances in Atmospheric Sciences, 2015, 32, 149-168.	4.3	50
97	Climatic change features of fog and haze in winter over North China and Huang-Huai Area. Science China Earth Sciences, 2015, 58, 1370-1376.	5.2	51
98	The Capability of ENSEMBLES Models in Predicting the Principal Modes of Pan-Asian Monsoon Precipitation. Journal of Climate, 2015, 28, 8486-8510.	3.2	5
99	Modulation of Aleutian Low and Antarctic Oscillation co-variability by ENSO. Climate Dynamics, 2015, 44, 1245-1256.	3.8	14
100	The western Pacific subtropical high after the 1970s: westward or eastward shift?. Climate Dynamics, 2015, 44, 2035-2047.	3.8	89
101	Design and testing of a global climate prediction system based on a coupled climate model. Science China Earth Sciences, 2014, 57, 2417-2427.	5.2	21
102	Improving the Prediction of the Summer Asian–Pacific Oscillation Using the Interannual Increment Approach. Journal of Climate, 2014, 27, 8126-8134.	3.2	25
103	Late Winter Sea Ice in the Bering Sea: Predictor for Maize and Rice Production in Northeast China. Journal of Applied Meteorology and Climatology, 2014, 53, 1183-1192.	1.5	22
104	The strengthening relationship between <scp>A</scp> rctic <scp>O</scp> scillation and <scp>ENSO</scp> after the midâ€1990s. International Journal of Climatology, 2014, 34, 2515-2521.	3.5	33
105	Past, present and future of the carbon cycle. National Science Review, 2014, 1, 18-21.	9.5	7
106	Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theoretical and Applied Climatology, 2014, 115, 107-119.	2.8	84
107	Simulation of Greenland ice sheet during the mid-Pliocene warm period. Science Bulletin, 2014, 59, 201-211.	1.7	15
108	Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Advances in Atmospheric Sciences, 2014, 31, 8-16.	4.3	19

#	Article	IF	CITATIONS
109	Will typhoon over the western North Pacific be more frequent in the Blue Arctic conditions?. Science China Earth Sciences, 2014, 57, 1494-1500.	5.2	1
110	Analysis of sampling error uncertainties and trends in maximum and minimum temperatures in China. Advances in Atmospheric Sciences, 2014, 31, 263-272.	4.3	6
111	Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010. Science Bulletin, 2014, 59, 2439-2448.	1.7	47
112	Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. International Journal of Climatology, 2014, 34, 3616-3625.	3.5	46
113	Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model. International Journal of Climatology, 2013, 33, 1470-1481.	3.5	28
114	Influence of springtime North Atlantic Oscillation on crops yields in Northeast China. Climate Dynamics, 2013, 41, 3317-3324.	3.8	34
115	Spring surface cooling trend along the East Asian coast after the late 1990s. Science Bulletin, 2013, 58, 3847-3851.	1.7	13
116	The increase of snowfall in Northeast China after the mid-1980s. Science Bulletin, 2013, 58, 1350-1354.	1.7	59
117	Transition of zonal asymmetry of the Arctic Oscillation and the Antarctic Oscillation at the end of 1970s. Advances in Atmospheric Sciences, 2013, 30, 41-47.	4.3	4
118	Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations. Advances in Atmospheric Sciences, 2013, 30, 48-56.	4.3	62
119	Larger variability, better predictability?. International Journal of Climatology, 2013, 33, 2341-2351.	3.5	24
120	Water Vapor Transport Paths and Accumulation during Widespread Snowfall Events in Northeastern China. Journal of Climate, 2013, 26, 4550-4566.	3.2	57
121	Is the Interannual Variability of the Summer Asian–Pacific Oscillation Predictable?. Journal of Climate, 2013, 26, 3865-3876.	3.2	11
122	Impact of the November/December Arctic Oscillation on the following January temperature in East Asia. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,981.	3.3	47
123	Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5216-5230.	3.3	184
124	Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6200-6211.	3.3	13
125	Present and future relationship between the East Asian winter monsoon and ENSO: Results of CMIP5. Journal of Geophysical Research: Oceans, 2013, 118, 5222-5237.	2.6	53
126	Sensitivity of the modeled present-day Greenland Ice Sheet to climatic forcing and spin-up methods and its influence on future sea level projections. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2174-2189.	2.8	12

#	Article	IF	CITATIONS
127	Midâ€Holocene Asian summer climate and its responses to cold ocean surface simulated in the PMIP2 OAGCMs experiments. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4117-4128.	3.3	10
128	Asian Origin of Interannual Variations of Summer Climate over the Extratropical North Atlantic Ocean. Journal of Climate, 2012, 25, 6594-6609.	3.2	38
129	A Statistical Downscaling Model for Forecasting Summer Rainfall in China from DEMETER Hindcast Datasets. Weather and Forecasting, 2012, 27, 608-628.	1.4	29
130	The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dynamics, 2012, 39, 2917-2936.	3.8	60
131	Interdecadal variation of the West African summer monsoon during 1979–2010 and associated variability. Climate Dynamics, 2012, 39, 2883-2894.	3.8	21
132	Analysis of the decadal and interdecadal variations of the east asian winter monsoon as simulated by 20 coupled models in IPCC AR4. Journal of Meteorological Research, 2012, 26, 476-488.	1.0	9
133	A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research, 2012, 117, .	3.3	100
134	Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. Journal of Geophysical Research, 2012, 117, .	3.3	96
135	Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon?. Journal of Geophysical Research, 2012, 117, .	3.3	56
136	Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Science Bulletin, 2012, 57, 3535-3540.	1.7	153
137	Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia. Journal of Climate, 2012, 26, 3968-3981.	3.2	79
138	Pan-Asian monsoon and its definition, principal modes of precipitation, and variability features. Science China Earth Sciences, 2012, 55, 787-795.	5.2	21
139	Predictability of the East Asian winter monsoon interannual variability as indicated by the DEMETER CGCMS. Advances in Atmospheric Sciences, 2012, 29, 441-454.	4.3	41
140	A simulation study of a heavy rainfall process over the Yangtze River valley using the two-way nesting approach. Advances in Atmospheric Sciences, 2012, 29, 731-743.	4.3	14
141	The significant climate warming in the northern Tibetan Plateau and its possible causes. International Journal of Climatology, 2012, 32, 1775-1781.	3.5	144
142	Will boreal winter precipitation over China increase in the future? An AGCM simulation under summer "ice-free Arctic―conditions. Science Bulletin, 2012, 57, 921-926.	1.7	27
143	Interdecadal Relationships between the Asian–Pacific Oscillation and Summer Climate Anomalies over Asia, North Pacific, and North America during a Recent 100 Years. Journal of Climate, 2011, 24, 4793-4799.	3.2	38
144	Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dynamics, 2011, 36, 1463-1473.	3.8	356

#	Article	IF	CITATIONS
145	An exceptionally heavy snowfall in Northeast china: large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteorology and Atmospheric Physics, 2011, 113, 11-25.	2.0	77
146	The recent interdecadal and interannual variation of water vapor transport over eastern China. Advances in Atmospheric Sciences, 2011, 28, 1039-1048.	4.3	58
147	Accumulation over the Greenland Ice Sheet as represented in reanalysis data. Advances in Atmospheric Sciences, 2011, 28, 1030-1038.	4.3	29
148	Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environmental Earth Sciences, 2011, 63, 97-107.	2.7	55
149	A new prediction model for tropical storm frequency over the western North Pacific using observed winter-spring precipitation and geopotential height at 500 hPa. Journal of Meteorological Research, 2011, 25, 262-271.	1.0	2
150	The hindcast of winter and spring Arctic and Antarctic oscillation with the coupled climate models. Journal of Meteorological Research, 2011, 25, 340-354.	1.0	11
151	Evaluation and analysis of RegCM3 simulated summer rainfall over the Huaihe River Basin of China. Journal of Meteorological Research, 2011, 25, 386-394.	1.0	5
152	Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. Journal of Meteorological Research, 2011, 25, 581-592.	1.0	35
153	Simulation of sea surface temperature changes in the Middle Pliocene warm period and comparison with reconstructions. Science Bulletin, 2011, 56, 890-899.	1.7	16
154	Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrological Processes, 2011, 25, 2531-2541.	2.6	87
155	Effects of ice and water clouds on rainfall: a partitioning analysis based on surface rainfall budget. Atmospheric Science Letters, 2011, 12, 300-308.	1.9	3
156	The relationship between the Aleutian Low and the Australian summer monsoon at interannual time scales. Advances in Atmospheric Sciences, 2010, 27, 177-184.	4.3	10
157	Changes in the tropical cyclone genesis potential index over the western north pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 2010, 27, 1246-1258.	4.3	24
158	Linkage of the Boreal Spring Antarctic Oscillation to the West African Summer Monsoon. Journal of the Meteorological Society of Japan, 2010, 88, 15-28.	1.8	34
159	Improving Extraseasonal Summer Rainfall Prediction by Merging Information from GCMs and Observations. Weather and Forecasting, 2010, 25, 1263-1274.	1.4	37
160	Simulation of dust aerosol radiative feedback using the GMOD: 2. Dustâ€climate interactions. Journal of Geophysical Research, 2010, 115, .	3.3	45
161	Spatialâ€ŧemporal features of intense snowfall events in China and their possible change. Journal of Geophysical Research, 2010, 115, .	3.3	112
162	A New Approach to Forecasting Typhoon Frequency over the Western North Pacific. Weather and Forecasting, 2009, 24, 974-986.	1.4	91

#	Article	IF	CITATIONS
163	A New Scheme for Improving the Seasonal Prediction of Summer Precipitation Anomalies. Weather and Forecasting, 2009, 24, 548-554.	1.4	69
164	A possible mechanism for the coâ€variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. International Journal of Climatology, 2009, 29, 1276-1284.	3.5	84
165	The responses of East Asian Summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced freshwater input simulation. Science Bulletin, 2009, 54, 4724-4732.	9.0	31
166	Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951–2000. Advances in Atmospheric Sciences, 2009, 26, 748-762.	4.3	38
167	Variability of Northeast China river break-up date. Advances in Atmospheric Sciences, 2009, 26, 701-706.	4.3	35
168	Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. Journal of Geophysical Research, 2009, 114, .	3.3	35
169	Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust: 1. Dust cycle and validation. Journal of Geophysical Research, 2009, 114, .	3.3	55
170	Interdecadal change in the connection between Hadley circulation and winter temperature in East Asia. Advances in Atmospheric Sciences, 2008, 25, 24-30.	4.3	15
171	Revisiting effect of ocean diapycnal mixing on Atlantic meridional overturning circulation recovery in a freshwater perturbation simulation. Advances in Atmospheric Sciences, 2008, 25, 597-609.	4.3	7
172	The springtime North Asia cyclone activity index and the Southern Annular Mode. Advances in Atmospheric Sciences, 2008, 25, 673-679.	4.3	12
173	Relationship between Hadley circulation and sea ice extent in the Bering Sea. Science Bulletin, 2008, 53, 444-449.	1.7	13
174	A physically-based statistical forecast model for the middle-lower reaches of the Yangtze River Valley summer rainfall. Science Bulletin, 2008, 53, 602-609.	1.7	115
175	The northern annular mode: More zonal symmetric than the southern annular mode. Science Bulletin, 2008, 53, 1740-1744.	9.0	5
176	Can the climate background of western North Pacific typhoon activity be predicted by climate model?. Science Bulletin, 2008, 53, 2392-2399.	9.0	12
177	Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. Journal of Geophysical Research, 2008, 113, .	3.3	125
178	Precipitation Distribution along the Qinghai-Xizang (Tibetan) Highway, Summer 1998. Arctic, Antarctic, and Alpine Research, 2008, 40, 761-769.	1.1	10
179	Comparison analysis of the summer monsoon precipitation between northern and southern slopes of Tanggula Mountains, Qinghai–Xizang (Tibetan) Plateau: a case study in summer 1998. Hydrological Processes, 2007, 21, 1841-1847.	2.6	29
180	Interdecadal variability of the East Asian summer monsoon in an AGCM. Advances in Atmospheric Sciences, 2007, 24, 808-818.	4.3	36

#	Article	IF	CITATIONS
181	Brief review of some CLIVAR-related studies in China. Advances in Atmospheric Sciences, 2007, 24, 1037-1048.	4.3	3
182	Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Sciences, 2007, 50, 1409-1416.	0.9	79
183	Relationship and its instability of ENSO — Chinese variations in droughts and wet spells. Science in China Series D: Earth Sciences, 2007, 50, 145-152.	0.9	77
184	Relationship between the Antarctic oscillation in the western North Pacific typhoon frequency. Science Bulletin, 2007, 52, 561-565.	1.7	68
185	Decadal co-variability of the summer surface air temperature and soil moisture in China under global warming. Science Bulletin, 2007, 52, 1559-1565.	1.7	10
186	Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley. Journal of Geophysical Research, 2006, 111, .	3.3	50
187	Effect of heavy snowfall on ground temperature, northern Tibetan Plateau. Annals of Glaciology, 2006, 43, 317-322.	1.4	6
188	Wavelet analysis reveals periodic oscillations in a 1700 year ice-core record from Guliya, China. Annals of Glaciology, 2006, 43, 132-136.	1.4	5
189	Correlation between precipitation and temperature variations in the past 300 years recorded in Guliya ice core, China. Annals of Glaciology, 2006, 43, 137-141.	1.4	8
190	Impact of topography and land-sea distribution on East Asian paleoenvironmental patterns. Advances in Atmospheric Sciences, 2006, 23, 258-266.	4.3	12
191	A possible impact of cooling over the Tibetan Plateau on the mid-Holocene East Asian monsoon climate. Advances in Atmospheric Sciences, 2006, 23, 543-550.	4.3	12
192	Modeling the tropical Pacific Ocean using a regional coupled climate model. Advances in Atmospheric Sciences, 2006, 23, 625-638.	4.3	2
193	Linkage between the northeast Mongolian precipitation and the Northern Hemisphere Zonal Circulation. Advances in Atmospheric Sciences, 2006, 23, 659-664.	4.3	10
194	Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale. Science Bulletin, 2006, 51, 75-79.	1.7	45
195	Southern Hemisphere mean zonal wind in upper troposphere and East Asian summer monsoon circulation. Science Bulletin, 2006, 51, 1508-1514.	9.0	19
196	Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrological Processes, 2006, 20, 505-513.	2.6	35
197	Analysis on the decadal scale variation of the dust storm in North China. Science in China Series D: Earth Sciences, 2005, 48, 2260-2266.	0.9	28
198	Modeling the middle Pliocene climate with a global atmospheric general circulation model. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	69

#	Article	IF	CITATIONS
199	Impacts of snow and glaciers over Tibetan Plateau on Holocene climate change: Sensitivity experiments with a coupled model of intermediate complexity. Geophysical Research Letters, 2005, 32, .	4.0	32
200	Central-north China precipitation as reconstructed from the Qing dynasty: Signal of the Antarctic Atmospheric Oscillation. Geophysical Research Letters, 2005, 32, .	4.0	71
201	Interannual Variability of Mascarene High and Australian High and Their Influences on East Asian Summer Monsoon. Journal of the Meteorological Society of Japan, 2004, 82, 1173-1186.	1.8	82
202	Ocean data assimilation with background error covariance derived from OGCM outputs. Advances in Atmospheric Sciences, 2004, 21, 181-192.	4.3	9
203	The impact of location-dependent correlation scales in ocean data assimilation. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	8
204	2002: The extra-strong warm winter event in North Asia and its accompanying anomalous atmospheric circulation. Science Bulletin, 2003, 48, 1031-1033.	1.7	19
205	Last Glacial Maximum over China: Sensitivities of climate to paleovegetation and Tibetan ice sheet. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	38