
Jacek Olszewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6691935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing bend-induced loss and crosstalk in a two-mode ridge waveguide by steplike thickness structuring. Applied Optics, 2022, 61, 1164.	1.8	4
2	Ceramic surface relief gratings imprinted on an optical fiber tip. Applied Optics, 2022, 61, 6128.	1.8	1
3	Dual-Wavelength Pumped Highly Birefringent Microstructured Silica Fiber for Widely Tunable Soliton Self-Frequency Shift. Journal of Lightwave Technology, 2021, 39, 3260-3268.	4.6	9
4	The Influence of Germanium Concentration in the Fiber Core on Temperature Sensitivity in Rayleigh Scattering-Based OFDR. IEEE Sensors Journal, 2021, 21, 20036-20044.	4.7	5
5	Plug&Play Fiberâ€Coupled 73ÂkHz Singleâ€Photon Source Operating in the Telecom Oâ€Band. Advanced Quantum Technologies, 2020, 3, 2000018.	3.9	34
6	Enhancement of spectral response of Bragg gratings written in nanostructured and multi-stepped optical fibers with radially shaped GeO ₂ concentration. Optics Express, 2020, 28, 14774.	3.4	4
7	Effective Method for Determining Chromatic Dispersion From a Spectral Interferogram. Journal of Lightwave Technology, 2019, 37, 1056-1062.	4.6	1
8	Method for direct coupling of a semiconductor quantum dot to an optical fiber for single-photon source applications. Optics Express, 2019, 27, 26772.	3.4	24
9	Pupil autoregulation impairment as an early marker of glaucomatous damage. Advances in Clinical and Experimental Medicine, 2019, 28, 1367-1375.	1.4	0
10	A method of chromatic dispersion retrieval from a zero-mean spectral interferogram. , 2018, , .		0
11	Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber. Sensors, 2017, 17, 1648.	3.8	9
12	Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment. Journal of Applied Physics, 2016, 120, .	2.5	8
13	Optimization of Stokes polarimeter based on a twisted nematic liquid crystal. Proceedings of SPIE, 2016, , .	0.8	0
14	Effect of Dielectric Medium Anisotropy on the Polarization Degree of Emission from a Single Quantum Dash. Acta Physica Polonica A, 2016, 129, A-48-A-52.	0.5	2
15	Polarimetric sensitivity to hydrostatic pressure and temperature in a side-hole fiber with squeezed microstructure. Journal of Optics (United Kingdom), 2015, 17, 125609.	2.2	5
16	Higher-order rocking filters induced mechanically in fibers with different birefringence dispersion. Applied Optics, 2014, 53, 1258.	1.8	5
17	Measurements of intermodal sensitivity of a two-mode holey fiber to strain, temperature, and hydrostatic pressure. Proceedings of SPIE, 2013, , .	0.8	0
18	Spectral-domain measurement of polarimetric sensitivity of a side-hole fiber to temperature and hydrostatic pressure. Proceedings of SPIE, 2013, , .	0.8	0

JACEK OLSZEWSKI

#	Article	IF	CITATIONS
19	Highly birefringent microstructured polymer fibers optimized for a preform drilling fabrication method. Journal of Optics (United Kingdom), 2013, 15, 075713.	2.2	9
20	Spectral measurements of polarimetric sensitivity of holey fiber to strain, temperature, and hydrostatic pressure. Proceedings of SPIE, 2013, , .	0.8	0
21	Nonlinear frequency conversion in a birefringent microstructured fiber tuned by externally applied hydrostatic pressure. Optics Letters, 2013, 38, 5260.	3.3	13
22	Spectral-Domain Measurements of Birefringence and Sensing Characteristics of a Side-Hole Microstructured Fiber. Sensors, 2013, 13, 11424-11438.	3.8	18
23	Spectral-Domain Measurement of Strain Sensitivity of a Two-Mode Birefringent Side-Hole Fiber. Sensors, 2012, 12, 12070-12081.	3.8	8
24	Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements. Optics Express, 2012, 20, 23320.	3.4	27
25	Rocking filter in microstructured fiber for high resolution hydrostatic pressure measurements. , 2012, , .		0
26	Control Over the Pressure Sensitivity of Bragg Grating-Based Sensors in Highly Birefringent Microstructured Optical Fibers. IEEE Photonics Technology Letters, 2012, 24, 527-529.	2.5	37
27	Phase retrieval from spectral interferograms including a stationary-phase point. Optics Communications, 2012, 285, 4733-4738.	2.1	18
28	Spectral-domain measurement of strain sensitivity of a two-mode birefringent holey fiber. Proceedings of SPIE, 2012, , .	0.8	0
29	Intermodal interferometer for strain and temperature sensing fabricated in birefringent boron doped microstructured fiber. Applied Optics, 2011, 50, 3742.	2.1	18
30	Modal interferometric sensor based in a birefringent boron-doped microstructured fiber. , 2011, , .		0
31	Polarizing photonic crystal fiber with low index inclusion in the core. Journal of Optics (United) Tj ETQq1 1 0.7843	314 rgBT / 2.2	Oyerlock 10
32	Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure. Optics Express, 2010, 18, 15113.	3.4	137
33	Birefringence analysis in photonic crystal fibers with germanium-doped core. Journal of Optics, 2009, 11, 045101.	1.5	5
34	Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature. Applied Physics B: Lasers and Optics, 2009, 94, 635-640.	2.2	34
35	Nonlinear control of soliton pulse delay with asymmetric dual-core photonic crystal fibers. Optics Letters, 2009, 34, 920.	3.3	14
36	Fiber Bragg Gratings in Germanium-Doped Highly Birefringent Microstructured Optical Fibers. IEEE Photonics Technology Letters, 2008, 20, 554-556.	2.5	52

JACEK OLSZEWSKI

#	Article	IF	CITATIONS
37	Birefringence in microstructure fiber with elliptical GeO_2 highly doped inclusion in the core. Optics Letters, 2008, 33, 2764.	3.3	7
38	Photonic crystal fibers for sensing applications. , 2008, , .		3
39	Asymmetric twin-core photonic crystal fiber for dispersionless all-optical delay control. , 2008, , .		0
40	The fabrication and characterization of fiber Bragg gratings in highly birefringent photonic crystal fibers for sensing applications. Proceedings of SPIE, 2008, , .	0.8	1
41	Investigations of bending loss oscillations in large mode area photonic crystal fibers. Proceedings of SPIE, 2008, , .	0.8	1
42	Measurements of polarimetric sensitivity to temperature in birefringent holey fibres. Measurement Science and Technology, 2007, 18, 3055-3060.	2.6	33
43	Sensing with photonic crystal fibres. , 2007, , .		3
44	Photonic crystal fibers: new opportunities for sensing. Proceedings of SPIE, 2007, , .	0.8	13
45	Investigations of birefringence of the fundamental and the higher order modes in index guiding photonic crystal fiber. , 2007, , .		0
46	<title>Sensing applications of photonic crystal fibres</title> ., 2007, , .		1
47	Polarization properties of all-solid photonic bandgap fibers. , 2007, , .		0
48	Sensing properties of Bragg grating in highly birefringent and single mode photonic crystal fiber. , 2007, , .		2
49	Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers. Optics Express, 2007, 15, 13547.	3.4	40
50	Analytical evaluation of bending loss oscillations in photonic crystal fibers. Optics Communications, 2007, 269, 261-270.	2.1	21
51	Measurements of sensitivity to hydrostatic pressure and temperature in highly birefringent photonic crystal fibers. Optical and Quantum Electronics, 2007, 39, 481-489.	3.3	23
52	Single-Polarization Single-Mode Photonic Band Gap Fiber. Acta Physica Polonica A, 2007, 111, 239-245.	0.5	10
53	<title>High birefringent photonic crystal optical fiber for Bragg gratings
inscriptions</title> . Proceedings of SPIE, 2007, , .	0.8	0
54	Measurements of hydrostatic pressure and temperature sensitivity in birefringent holey fibers. , 2006, 6182, 586.		0

#	Article	IF	CITATIONS
55	Polarizing Properties of Photonic Crystal Fibers. , 2006, , .		4
56	Theoretical investigations of birefringent holey fiber of new construction. , 2005, , .		0
5 7	Analysis of birefringent doped-core holey fibers for Bragg gratings. , 2005, 5855, 351.		2
58	Temperature sensitivity in birefringent photonic crystal fiber with triple defect. , 2005, , .		0
59	Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry. Applied Physics B: Lasers and Optics, 2005, 81, 325-331.	2.2	62
60	Polarization properties of photonic bandgap holey fibers. , 2005, , .		0
61	Sensitivity of highly birefringent photonic bandgap fibers to temperature and strain. , 2005, , .		2
62	Photonic crystal fibers for sensing applications. , 2005, , .		3
63	Experimental and theoretical investigations of birefringent holey fibers with a triple defect. Applied Optics, 2005, 44, 2652.	2.1	59
64	Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers. Optics Express, 2005, 13, 6015.	3.4	71
65	Polarizing photonic crystal fibers with wide operation range. Optics Communications, 2004, 239, 91-97.	2.1	17
66	Single polarization microstructured fiber with wide operation bandwidth. , 2004, 5450, 545.		0