
## Stuart John Bevan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6691235/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Research Recommendations Following the Discovery of Pain Sensitizing IgG Autoantibodies in<br>Fibromyalgia Syndrome. Pain Medicine, 2022, 23, 1084-1094.                                                          | 1.9  | 4         |
| 2  | Sulfated Progesterone Metabolites That Enhance Insulin Secretion via TRPM3 Are Reduced in Serum<br>From Women With Gestational Diabetes Mellitus. Diabetes, 2022, 71, 837-852.                                    | 0.6  | 3         |
| 3  | Passive transfer of fibromyalgia symptoms from patients to mice. Journal of Clinical Investigation, 2021, 131, .                                                                                                  | 8.2  | 106       |
| 4  | The KINGS <i>Ins2</i> +/G32S Mouse: A Novel Model of β-Cell Endoplasmic Reticulum Stress and Human<br>Diabetes. Diabetes, 2020, 69, 2667-2677.                                                                    | 0.6  | 16        |
| 5  | Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion<br>Channels by Gβγ Subunits. Journal of Neuroscience, 2019, 39, 7840-7852.                                     | 3.6  | 32        |
| 6  | Disruption of the Sensory System Affects Sterile Cutaneous Inflammation InÂVivo. Journal of<br>Investigative Dermatology, 2019, 139, 1936-1945.e3.                                                                | 0.7  | 12        |
| 7  | Autoantibodies produce pain in complex regional pain syndrome by sensitizing nociceptors. Pain, 2019, 160, 2855-2865.                                                                                             | 4.2  | 41        |
| 8  | Impaired Nociception in the Diabetic <i>Ins2+/Akita</i> Mouse. Diabetes, 2018, 67, 1650-1662.                                                                                                                     | 0.6  | 13        |
| 9  | Structure–Pungency Relationships and TRP Channel Activation of Drimane Sesquiterpenes in<br>Tasmanian Pepper ( <i>Tasmannia lanceolata</i> ). Journal of Agricultural and Food Chemistry, 2017, 65,<br>5700-5712. | 5.2  | 20        |
| 10 | G protein $\hat{I}^2\hat{I}^3$ subunits inhibit TRPM3 ion channels in sensory neurons. ELife, 2017, 6, .                                                                                                          | 6.0  | 76        |
| 11 | Nociceptive Sensitizers Are Regulated in Damaged Joint Tissues, Including Articular Cartilage, When<br>Osteoarthritic Mice Display Pain Behavior. Arthritis and Rheumatology, 2016, 68, 857-867.                  | 5.6  | 73        |
| 12 | TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO. British Journal of Pharmacology, 2016, 173, 2419-2433.                           | 5.4  | 67        |
| 13 | Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner. Arthritis Research and Therapy, 2016, 18, 7.          | 3.5  | 39        |
| 14 | Activation of transient receptor potential ankyrin 1 induces CGRP release from spinal cord synaptosomes. Pharmacology Research and Perspectives, 2015, 3, e00191.                                                 | 2.4  | 15        |
| 15 | TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nature Communications, 2015, 6, 7150.                                                                                                         | 12.8 | 111       |
| 16 | TRPA1 mediates the hypothermic action of acetaminophen. Scientific Reports, 2015, 5, 12771.                                                                                                                       | 3.3  | 37        |
| 17 | Streptozotocin Stimulates the Ion Channel TRPA1 Directly. Journal of Biological Chemistry, 2015, 290, 15185-15196.                                                                                                | 3.4  | 59        |
| 18 | Stimulation of GLP-1 Secretion Downstream of the Ligand-Gated Ion Channel TRPA1. Diabetes, 2015, 64, 1202-1210                                                                                                    | 0.6  | 50        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanisms Underlying the Scratching Behavior Induced by the Activation of Proteinase-Activated Receptor-4 in Mice. Journal of Investigative Dermatology, 2015, 135, 2484-2491.                                                                                                                                                                                                         | 0.7  | 16        |
| 20 | TRPA1 is essential for the vascular response to environmental cold exposure. Nature Communications, 2014, 5, 5732.                                                                                                                                                                                                                                                                      | 12.8 | 107       |
| 21 | Modifications of Gait as Predictors of Natural Osteoarthritis Progression in STR/Ort Mice. Arthritis and Rheumatology, 2014, 66, 1832-1842.                                                                                                                                                                                                                                             | 5.6  | 25        |
| 22 | TRPV1. Handbook of Experimental Pharmacology, 2014, 222, 207-245.                                                                                                                                                                                                                                                                                                                       | 1.8  | 137       |
| 23 | Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. Journal of<br>Clinical Investigation, 2014, 124, 2023-2036.                                                                                                                                                                                                                                        | 8.2  | 140       |
| 24 | Superoxide generation and leukocyte accumulation: key elements in the mediation of leukotriene<br>B <sub>4</sub> â€induced itch by transient receptor potential ankyrin 1 and transient receptor potential<br>vanilloid 1. FASEB Journal, 2013, 27, 1664-1673.                                                                                                                          | 0.5  | 67        |
| 25 | Methylglyoxal Evokes Pain by Stimulating TRPA1. PLoS ONE, 2013, 8, e77986.                                                                                                                                                                                                                                                                                                              | 2.5  | 109       |
| 26 | Monoacylglycerols Activate TRPV1 – A Link between Phospholipase C and TRPV1. PLoS ONE, 2013, 8, e81618.                                                                                                                                                                                                                                                                                 | 2.5  | 125       |
| 27 | 7- <i>tert</i> -Butyl-6-(4-Chloro-Phenyl)-2-Thioxo-2,3-Dihydro-1 <i>H</i> -Pyrido[2,3- <i>d</i> )Pyrimidin-4-One,<br>a Classic Polymodal Inhibitor of Transient Receptor Potential Vanilloid Type 1 with a Reduced Liability<br>for Hyperthermia, Is Analgesic and Ameliorates Visceral Hypersensitivity. Journal of Pharmacology and<br>Experimental Therapeutics. 2012. 342. 389-398. | 2.5  | 38        |
| 28 | Partial medial meniscectomy produces osteoarthritis pain-related behaviour in female C57BL/6 mice.<br>Pain, 2012, 153, 281-292.                                                                                                                                                                                                                                                         | 4.2  | 67        |
| 29 | TRPA1 Has a Key Role in the Somatic Pro-Nociceptive Actions of Hydrogen Sulfide. PLoS ONE, 2012, 7, e46917.                                                                                                                                                                                                                                                                             | 2.5  | 57        |
| 30 | TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid<br>Δ9-tetrahydrocannabiorcol. Nature Communications, 2011, 2, 551.                                                                                                                                                                                                                                   | 12.8 | 236       |
| 31 | A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor α-induced inflammatory hyperalgesia and Freund's complete adjuvant-induced monarthritis. Arthritis and Rheumatism, 2011, 63, 819-829.                                                                                                     | 6.7  | 151       |
| 32 | 4-Oxo-2-nonenal (4-ONE): Evidence of Transient Receptor Potential Ankyrin 1-Dependent and<br>-Independent Nociceptive and Vasoactive Responses In Vivo. Journal of Pharmacology and Experimental<br>Therapeutics, 2011, 337, 117-124.                                                                                                                                                   | 2.5  | 49        |
| 33 | The Roles of iPLA2, TRPM8 and TRPA1 in Chemically Induced Cold Hypersensitivity. Molecular Pain, 2010,<br>6, 1744-8069-6-4.                                                                                                                                                                                                                                                             | 2.1  | 107       |
| 34 | Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research, 2010, 87, 760-768.                                                                                                                                                                                                                                      | 3.8  | 114       |
| 35 | Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn <sup>2+</sup> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8374-8379.                                                                                                                                                                                          | 7.1  | 130       |
| 36 | Distribution and Function of the Hydrogen Sulfide–Sensitive TRPA1 Ion Channel in Rat Urinary<br>Bladder. European Urology, 2008, 53, 391-400.                                                                                                                                                                                                                                           | 1.9  | 263       |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress.<br>Journal of Neuroscience, 2008, 28, 2485-2494.                                                                                          | 3.6  | 625       |
| 38 | Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proceedings of the<br>National Academy of Sciences of the United States of America, 2007, 104, 10655-10660.                                              | 7.1  | 410       |
| 39 | Modulation of the Cold-Activated Channel TRPM8 by Lysophospholipids and Polyunsaturated Fatty<br>Acids. Journal of Neuroscience, 2007, 27, 3347-3355.                                                                                      | 3.6  | 158       |
| 40 | Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain, 2007, 130, 225-234.                                                                                                                                           | 4.2  | 119       |
| 41 | Mediadores inflamatorios y moduladores del dolor. , 2007, , 49-72.                                                                                                                                                                         |      | Ο         |
| 42 | ldentification and Biological Characterization of 6-Aryl-7-isopropylquinazolinones as Novel TRPV1<br>Antagonists that Are Effective in Models of Chronic Pain. Journal of Medicinal Chemistry, 2006, 49,<br>471-474.                       | 6.4  | 61        |
| 43 | Chapter 7 TRP Channels as Thermosensors. Current Topics in Membranes, 2006, 57, 199-239.                                                                                                                                                   | 0.9  | 1         |
| 44 | Inflammatory mediators and modulators of pain. , 2006, , 49-72.                                                                                                                                                                            |      | 55        |
| 45 | Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor. British Journal of Pharmacology, 2005, 144, 889-899.                                                | 5.4  | 36        |
| 46 | Therapeutic potential of cannabinoid receptor agonists as analgesic agents. Expert Opinion on Investigational Drugs, 2005, 14, 695-703.                                                                                                    | 4.1  | 58        |
| 47 | Regulation of calcitonin gene-related peptide and TRPV1 in a rat model of osteoarthritis. Neuroscience<br>Letters, 2005, 388, 75-80.                                                                                                       | 2.1  | 138       |
| 48 | ldentification of Species-specific Determinants of the Action of the Antagonist Capsazepine and the Agonist PPAHV on TRPV1. Journal of Biological Chemistry, 2004, 279, 17165-17172.                                                       | 3.4  | 89        |
| 49 | Anandamide-Evoked Activation of Vanilloid Receptor 1 Contributes to the Development of Bladder<br>Hyperreflexia and Nociceptive Transmission to Spinal Dorsal Horn Neurons in Cystitis. Journal of<br>Neuroscience, 2004, 24, 11253-11263. | 3.6  | 182       |
| 50 | siRNA relieves chronic neuropathic pain. Nucleic Acids Research, 2004, 32, e49-e49.                                                                                                                                                        | 14.5 | 338       |
| 51 | TRPM8 Activation by Menthol, Icilin, and Cold Is Differentially Modulated by Intracellular pH. Journal of Neuroscience, 2004, 24, 5364-5369.                                                                                               | 3.6  | 198       |
| 52 | Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat.<br>Pain, 2004, 107, 33-40.                                                                                                        | 4.2  | 46        |
| 53 | Pain related behaviour in two models of osteoarthritis in the rat knee. Pain, 2004, 112, 83-93.                                                                                                                                            | 4.2  | 356       |
| 54 | Vanilloid receptor 1 (VR1): an integrator of noxious and inflammatory stimuliâ^—. Advances in Molecular<br>and Cell Biology, 2004, 32, 331-350.                                                                                            | 0.1  | 0         |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | THIS ARTICLE HAS BEEN RETRACTED Activation of capsaicinâ€sensitive primary sensory neurones induces anandamide production and release. Journal of Neurochemistry, 2003, 84, 585-591.                                                        | 3.9  | 80        |
| 56 | Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by<br>activating both the cannabinoid 1 receptor and the vanilloid receptor 1in vitro. European Journal of<br>Neuroscience, 2003, 17, 2611-2618. | 2.6  | 168       |
| 57 | ANKTM1, a TRP-like Channel Expressed in Nociceptive Neurons, Is Activated by Cold Temperatures. Cell, 2003, 112, 819-829.                                                                                                                   | 28.9 | 2,180     |
| 58 | Comparative activity of the anti-convulsants oxcarbazepine, carbamazepine, lamotrigine and gabapentin in a model of neuropathic pain in the rat and guinea-pig. Pain, 2003, 105, 355-362.                                                   | 4.2  | 93        |
| 59 | Selective internalization of sodium channels in rat dorsal root ganglion neurons infected with herpes simplex virus-1. Journal of Cell Biology, 2002, 158, 1251-1262.                                                                       | 5.2  | 33        |
| 60 | A Heat-Sensitive TRP Channel Expressed in Keratinocytes. Science, 2002, 296, 2046-2049.                                                                                                                                                     | 12.6 | 828       |
| 61 | A TRP Channel that Senses Cold Stimuli and Menthol. Cell, 2002, 108, 705-715.                                                                                                                                                               | 28.9 | 1,972     |
| 62 | Metabotropic Glutamate Receptor 5 Upregulation in A-Fibers after Spinal Nerve Injury:<br>2-Methyl-6-(Phenylethynyl)-Pyridine (MPEP) Reverses the Induced Thermal Hyperalgesia. Journal of<br>Neuroscience, 2002, 22, 2660-2668.             | 3.6  | 96        |
| 63 | Functional Downregulation of P2X <sub>3</sub> Receptor Subunit in Rat Sensory Neurons Reveals a<br>Significant Role in Chronic Neuropathic and Inflammatory Pain. Journal of Neuroscience, 2002, 22,<br>8139-8147.                          | 3.6  | 242       |
| 64 | Modulation of sodium channels in primary afferent neurons. Novartis Foundation Symposium, 2002, 241, 144-53; discussion 153-8, 226-32.                                                                                                      | 1.1  | 9         |
| 65 | Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). British Journal of<br>Pharmacology, 2001, 132, 1084-1094.                                                                                                 | 5.4  | 176       |
| 66 | Capsaicin and pain mechanisms. , 1999, , 61-80.                                                                                                                                                                                             |      | 2         |
| 67 | Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neuroscience Letters, 1998, 250, 177-180.                                                            | 2.1  | 180       |
| 68 | A Novel Small Conductance Ca2+-activated K+ Channel Blocker from Oxyuranus scutellatusTaipan<br>Venom. Journal of Biological Chemistry, 1997, 272, 19925-19930.                                                                             | 3.4  | 22        |
| 69 | Analogues of Capsaicin with Agonist Activity as Novel Analgesic Agents:Â Structureâ^'Activity Studies. 4.<br>Potent, Orally Active Analgesics. Journal of Medicinal Chemistry, 1996, 39, 4942-4951.                                         | 6.4  | 56        |
| 70 | Similarities and Differences in the Structureâ^'Activity Relationships of Capsaicin and Resiniferatoxin<br>Analogues. Journal of Medicinal Chemistry, 1996, 39, 2939-2952.                                                                  | 6.4  | 80        |
| 71 | Chapter 12. Signal transduction in nociceptive afferent neurons in inflammatory conditions. Progress in Brain Research, 1996, 113, 201-213.                                                                                                 | 1.4  | 11        |
| 72 | The Discovery of Capsazepine, the First Competitive Antagonist of the Sensory Neuron Excitants<br>Capsaicin and Resiniferatoxin. Journal of Medicinal Chemistry, 1994, 37, 1942-1954.                                                       | 6.4  | 201       |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends in Neurosciences, 1994, 17, 509-512.                                                                                                                           | 8.6  | 285       |
| 74 | A comparison of capsazepine and ruthenium red as capsaicin antagonists in the rat isolated urinary bladder and vas deferens. British Journal of Pharmacology, 1993, 108, 801-805.                                                      | 5.4  | 73        |
| 75 | Effect of capsazepine on the release of calcitonin geneâ€related peptideâ€like immunoreactivity (CCRPâ€LI)<br>induced by low pH, capsaicin and potassium in rat soleus muscle. British Journal of Pharmacology,<br>1993, 110, 609-612. | 5.4  | 44        |
| 76 | Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 3. The<br>hydrophobic side-chain "C-region". Journal of Medicinal Chemistry, 1993, 36, 2381-2389.                                    | 6.4  | 107       |
| 77 | Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond "B-region". Journal of Medicinal Chemistry, 1993, 36, 2373-2380.                                                   | 6.4  | 112       |
| 78 | Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 1. The aromatic "A-region". Journal of Medicinal Chemistry, 1993, 36, 2362-2372.                                                     | 6.4  | 148       |
| 79 | Expression of Functional Bradykinin Receptors in Xenopus Oocytes. Journal of Neurochemistry, 1992, 58, 243-249.                                                                                                                        | 3.9  | 16        |
| 80 | Properties of 5â€hydroxytryptamine <sub>3</sub> receptorâ€gated currents in adult rat dorsal root<br>ganglion neurones. British Journal of Pharmacology, 1991, 102, 272-276.                                                           | 5.4  | 44        |
| 81 | Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends in Pharmacological Sciences, 1990, 11, 331-333.                                                                                                      | 8.7  | 395       |
| 82 | Cellular mechanism of action of resiniferatoxin: a potent sensory neuron excitotoxin. Brain<br>Research, 1990, 520, 131-140.                                                                                                           | 2.2  | 130       |
| 83 | Arachidonic-acid metabolites as second messengers. Nature, 1987, 328, 20-20.                                                                                                                                                           | 27.8 | 46        |
| 84 | Voltage-dependent potassium currents in cultured astrocytes. Nature, 1985, 315, 229-232.                                                                                                                                               | 27.8 | 105       |
| 85 | An Analysis of Cell Membrane Noise. Annals of Statistics, 1979, 7, 237.                                                                                                                                                                | 2.6  | 14        |
| 86 | The distribution of αâ€bungarotoxin binding sites on mammalian skeletal muscle developing <i>in<br/>vivo</i> . Journal of Physiology, 1977, 267, 195-213.                                                                              | 2.9  | 258       |