Andrea Testa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6689737/publications.pdf

Version: 2024-02-01

31	2,373	17 h-index	32
papers	citations		g-index
39	39	39	2100 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Development of NanoLuc-targeting protein degraders and a universal reporter system to benchmark tag-targeted degradation platforms. Nature Communications, 2022, 13, 2073.	12.8	11
2	Translating PROTAC chemical series optimization into functional outcomes underlying BRD7 and BRD9 protein degradation. Current Research in Chemical Biology, 2021, 1, 100009.	2.9	11
3	Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nature Chemical Biology, 2021, 17, 1157-1167.	8.0	108
4	Development of BromoTag: A "Bump-and-Holeâ€â€"PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. Journal of Medicinal Chemistry, 2021, 64, 15477-15502.	6.4	37
5	The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type. Exploration of Targeted Anti-tumor Therapy, 2021, 2, 586-601.	0.8	3
6	Structureâ€Based Design of a Macrocyclic PROTAC. Angewandte Chemie - International Edition, 2020, 59, 1727-1734.	13.8	150
7	Structureâ€Based Design of a Macrocyclic PROTAC. Angewandte Chemie, 2020, 132, 1744-1751.	2.0	13
8	Inducible Degradation of Target Proteins through a Tractable Affinity-Directed Protein Missile System. Cell Chemical Biology, 2020, 27, 1164-1180.e5.	5.2	42
9	Understanding and Improving the Membrane Permeability of VH032-Based PROTACs. ACS Medicinal Chemistry Letters, 2020, 11, 1732-1738.	2.8	83
10	Stereoselective synthesis of allele-specific BET inhibitors. Organic and Biomolecular Chemistry, 2020, 18, 7533-7539.	2.8	4
11	Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. ACS Chemical Biology, 2019, 14, 2024-2034.	3.4	67
12	Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader. ACS Chemical Biology, 2019, 14, 882-892.	3.4	88
13	Cereblon versus VHL: Hijacking E3 ligases against each other using PROTACs. Bioorganic and Medicinal Chemistry, 2019, 27, 2466-2479.	3.0	97
14	New molecular and therapeutic insights into canine diffuse large B-cell lymphoma elucidates the role of the dog as a model for human disease. Haematologica, 2019, 104, e256-e259.	3.5	43
15	Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel–Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Journal of Medicinal Chemistry, 2019, 62, 699-726.	6.4	230
16	Optimization of a "bump-and-hole―approach to allele-selective BET bromodomain inhibition. Chemical Science, 2018, 9, 2452-2468.	7.4	34
17	Impact of Target Warhead and Linkage Vector on Inducing Protein Degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET Inhibitor Scaffolds. Journal of Medicinal Chemistry, 2018, 61, 504-513.	6.4	161
18	Preclinical Evaluation of [¹⁸ F]LCATD as a PET Tracer to Study Drug-Drug Interactions Caused by Inhibition of Hepatic Transporters. Contrast Media and Molecular Imaging, 2018, 2018, 1-10.	0.8	1

#	Article	IF	CITATIONS
19	3-Fluoro-4-hydroxyprolines: Synthesis, Conformational Analysis, and Stereoselective Recognition by the VHL E3 Ubiquitin Ligase for Targeted Protein Degradation. Journal of the American Chemical Society, 2018, 140, 9299-9313.	13.7	102
20	Design, synthesis, in vitro characterization and preliminary imaging studies on fluorinated bile acid derivatives as PET tracers to study hepatic transporters. Bioorganic and Medicinal Chemistry, 2017, 25, 963-976.	3.0	18
21	Highâ€Affinity "Click―RGD Peptidomimetics as Radiolabeled Probes for Imaging α _v β ₃ Integrin. ChemMedChem, 2017, 12, 1142-1151.	3.2	13
22	Structural basis of PROTAC cooperative recognition for selective protein degradation. Nature Chemical Biology, 2017, 13, 514-521.	8.0	758
23	Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Nonâ€hydrolysable Nâ€6ubstituents on Tubuvaline. Chemistry - A European Journal, 2017, 23, 5842-5850.	3.3	9
24	Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nature Communications, 2017, 8, 830.	12.8	184
25	Mind the Metal: A Fragment Library-Derived Zinc Impurity Binds the E2 Ubiquitin-Conjugating Enzyme Ube2T and Induces Structural Rearrangements. Journal of Medicinal Chemistry, 2017, 60, 8183-8191.	6.4	17
26	Design and Synthesis of an RGD Peptidomimetic-Paclitaxel Conjugate Targeting $\hat{l}\pm v\hat{l}^2$ 3 Integrin for Tumour-Directed Drug Delivery. Synlett, 2017, 28, 2769-2776.	1.8	5
27	PET Tracers To Study Clinically Relevant Hepatic Transporters. Molecular Pharmaceutics, 2015, 12, 2203-2216.	4.6	31
28	Tricyclic Fused Pyrazoles with a â€ [~] Clickâ€ [™] 1,2,3-Triazole Substituent in Position 3 Are Nanomolar CB1 Receptor Ligands. Synthesis, 2015, 47, 817-826.	2.3	15
29	Multifunctional Deuterated and Tritiated â€ ⁻ Click' Molecular Probes via ÂPalladium-Mediated Reductive Deiodination of 5-lodo-1,2,3-Triazoles. Synlett, 2014, 25, 1019-1025.	1.8	5
30	Improved synthesis of the hypoxia probe 5-deutero-5-fluoro-5-deoxy-azomycin arabinoside (FAZA) as a model process for tritium radiolabeling. Journal of Fluorine Chemistry, 2013, 155, 110-117.	1.7	1
31	Diastereoselective Protocols for the Synthesis of 2,3- <i>trans</i> - and 2,3- <i>cis</i> -6-Methoxy-morpholine-2-carboxylic Acid Derivatives. Journal of Organic Chemistry, 2012, 77, 3454-3461.	3.2	24