
Greg Matlashewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688544/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	An intraspecies Leishmania donovani hybrid from the Indian subcontinent is associated with an atypical phenotype of cutaneous disease. IScience, 2022, 25, 103802.	4.1	12
2	Specificity of SARS-CoV-2 Antibody Detection Assays against S and N Proteins among Pre-COVID-19 Sera from Patients with Protozoan and Helminth Parasitic Infections. Journal of Clinical Microbiology, 2022, 60, JCM0171721.	3.9	7
3	Leishmania Major Centrin Gene-Deleted Parasites Generate Skin Resident Memory T-Cell Immune Response Analogous to Leishmanization. Frontiers in Immunology, 2022, 13, 864031.	4.8	7
4	Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. Npj Vaccines, 2022, 7, 32.	6.0	19
5	Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in <i>Leishmania</i> . MSphere, 2022, 7, .	2.9	4
6	Response to Visceral Leishmaniasis Cases through Active Case Detection and Vector Control in Low-Endemic Hilly Districts of Nepal. American Journal of Tropical Medicine and Hygiene, 2022, 107, 349-354.	1.4	2
7	Seropositivity of Visceral leishmaniasis on people of VL endemic three districts of Nepal. Parasitology International, 2021, 80, 102236.	1.3	2
8	Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Neglected Tropical Diseases, 2021, 15, e0009079.	3.0	11
9	Revival of Leishmanization and Leishmanin. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639801.	3.9	22
10	Leishmania donovani hybridisation and introgression in nature: a comparative genomic investigation. Lancet Microbe, The, 2021, 2, e250-e258.	7.3	26
11	A review of the leishmanin skin test: A neglected test for a neglected disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009531.	3.0	22
12	Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Communications Biology, 2021, 4, 929.	4.4	30
13	Characterization of a new Leishmania major strain for use in a controlled human infection model. Nature Communications, 2021, 12, 215.	12.8	28
14	The Phosphoenolpyruvate Carboxykinase Is a Key Metabolic Enzyme and Critical Virulence Factor of <i>Leishmania major</i> . Journal of Immunology, 2021, 206, 1013-1026.	0.8	3
15	Comparison of Novel Sandfly Control Interventions: A Pilot Study in Bangladesh. American Journal of Tropical Medicine and Hygiene, 2021, 105, 1786-1794.	1.4	3
16	A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications, 2020, 11, 3461.	12.8	72
17	Sensing Host Arginine Is Essential for <i>Leishmania</i> Parasites' Intracellular Development. MBio, 2020, 11, .	4.1	17
18	Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Methods in Molecular Biology, 2020, 2116, 199-224.	0.9	18

#	Article	IF	CITATIONS
19	Relationship of Serum Antileishmanial Antibody With Development of Visceral Leishmaniasis, Post-kala-azar Dermal Leishmaniasis and Visceral Leishmaniasis Relapse. Frontiers in Microbiology, 2019, 10, 2268.	3.5	10
20	Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in <i>Leishmania</i> . MSphere, 2019, 4, .	2.9	34
21	Barriers of Visceral Leishmaniasis reporting and surveillance in Nepal: comparison of governmental <scp>VL</scp> â€program districts with nonâ€program districts. Tropical Medicine and International Health, 2019, 24, 192-204.	2.3	9
22	Intervention Packages for Early Visceral Leishmaniasis Case Detection and Sandfly Control in Bangladesh: A Comparative Analysis. American Journal of Tropical Medicine and Hygiene, 2019, 100, 97-107.	1.4	7
23	Integrating Case Detection of Visceral Leishmaniasis and Other Febrile Illness with Vector Control in the Post-Elimination Phase in Nepal. American Journal of Tropical Medicine and Hygiene, 2019, 100, 108-114.	1.4	19
24	A complete Leishmania donovani reference genome identifies novel genetic variations associated with virulence. Scientific Reports, 2018, 8, 16549.	3.3	41
25	Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoS Neglected Tropical Diseases, 2018, 12, e0006659.	3.0	74
26	Development of a sandwich ELISA to detect Leishmania 40S ribosomal protein S12 antigen from blood samples of visceral leishmaniasis patients. BMC Infectious Diseases, 2018, 18, 500.	2.9	16
27	Evaluation of Real-time PCR for Diagnosis of Post-Kala-azar Dermal Leishmaniasis in Endemic Foci of Bangladesh. Open Forum Infectious Diseases, 2018, 5, ofy234.	0.9	16
28	Optimized CRISPR-Cas9 Genome Editing for <i>Leishmania</i> and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. MSphere, 2017, 2, .	2.9	66
29	Investments in Research and Surveillance Are Needed to Go Beyond Elimination and Stop Transmission of Leishmania in the Indian Subcontinent. PLoS Neglected Tropical Diseases, 2017, 11, e0005190.	3.0	26
30	Towards elimination of visceral leishmaniasis in the Indian subcontinent—Translating research to practice to public health. PLoS Neglected Tropical Diseases, 2017, 11, e0005889.	3.0	53
31	Transmission Dynamics of Visceral Leishmaniasis in the Indian Subcontinent – A Systematic Literature Review. PLoS Neglected Tropical Diseases, 2016, 10, e0004896.	3.0	74
32	Efficacy, Safety and Cost of Insecticide Treated Wall Lining, Insecticide Treated Bed Nets and Indoor Wall Wash with Lime for Visceral Leishmaniasis Vector Control in the Indian Sub-continent: A Multi-country Cluster Randomized Controlled Trial. PLoS Neglected Tropical Diseases, 2016, 10, e0004932.	3.0	21
33	Longitudinal Study of Transmission in Households with Visceral Leishmaniasis, Asymptomatic Infections and PKDL in Highly Endemic Villages in Bihar, India. PLoS Neglected Tropical Diseases, 2016, 10, e0005196.	3.0	40
34	Repeated training of accredited social health activists (ASHAs) for improved detection of visceral leishmaniasis cases in Bihar, India. Pathogens and Global Health, 2016, 110, 33-35.	2.3	6
35	Entomological efficacy of durable wall lining with reduced wall surface coverage for strengthening visceral leishmaniasis vector control in Bangladesh, India and Nepal. BMC Infectious Diseases, 2016, 16, 539.	2.9	11
36	Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasites and Vectors, 2016, 9, 281.	2.5	98

#	Article	IF	CITATIONS
37	Adaptation of <i>Leishmania donovani</i> to Cutaneous and Visceral Environments: in Vivo Selection and Proteomic Analysis. Journal of Proteome Research, 2015, 14, 1033-1059.	3.7	20
38	Development of Leishmania vaccines in the era of visceral leishmaniasis elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 423-424.	1.8	28
39	CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. MBio, 2015, 6, e00861.	4.1	168
40	Screening Leishmania donovani Complex-Specific Genes Required for Visceral Disease. Methods in Molecular Biology, 2015, 1201, 339-361.	0.9	4
41	Research priorities for elimination of visceral leishmaniasis. The Lancet Global Health, 2014, 2, e683-e684.	6.3	36
42	Asymptomatic Leishmania infections in northern India: a threat for the elimination programme?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 679-684.	1.8	29
43	Genetic Analysis of Leishmania donovani Tropism Using a Naturally Attenuated Cutaneous Strain. PLoS Pathogens, 2014, 10, e1004244.	4.7	97
44	Impact of ASHA Training on Active Case Detection of Visceral Leishmaniasis in Bihar, India. PLoS Neglected Tropical Diseases, 2014, 8, e2774.	3.0	16
45	Efficacy and safety of single-dose liposomal amphotericin B for visceral leishmaniasis in a rural public hospital in Bangladesh: a feasibility study. The Lancet Clobal Health, 2014, 2, e51-e57.	6.3	58
46	A2 and Other Visceralizing Proteins of Leishmania: Role in Pathogenesis and Application for Vaccine Development. Sub-Cellular Biochemistry, 2014, 74, 77-101.	2.4	11
47	Accelerated Active Case Detection of Visceral Leishmaniasis Patients in Endemic Villages of Bangladesh. PLoS ONE, 2014, 9, e103678.	2.5	5
48	Reducing Visceral Leishmaniasis by Insecticide Impregnation of Bed-Nets, Bangladesh. Emerging Infectious Diseases, 2013, 19, 1131-1134.	4.3	32
49	Determinants for the Development of Visceral Leishmaniasis Disease. PLoS Pathogens, 2013, 9, e1003053.	4.7	175
50	One More Death from Visceral Leishmaniasis Has Gone by Unnoticed. What Can Be Done?. PLoS Neglected Tropical Diseases, 2013, 7, e2082.	3.0	4
51	Diagnosis of Visceral Leishmaniasis in Bihar India: Comparison of the rK39 Rapid Diagnostic Test on Whole Blood Versus Serum. PLoS Neglected Tropical Diseases, 2013, 7, e2233.	3.0	25
52	A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e1956.	3.0	31
53	Role of Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase in Visceral Organ Infection by Leishmania donovani. Eukaryotic Cell, 2013, 12, 70-77.	3.4	21
54	Cross-Sectional Study to Assess Risk Factors for Leishmaniasis in an Endemic Region in Sri Lanka. American Journal of Tropical Medicine and Hygiene, 2013, 89, 742-749.	1.4	21

#	Article	IF	CITATIONS
55	Adjuvants for Leishmania vaccines: from models to clinical application. Frontiers in Immunology, 2012, 3, 144.	4.8	64
56	Leishmania donovanizymodeme MON-37 isolated from an autochthonous visceral leishmaniasis patient in Sri Lanka. Pathogens and Global Health, 2012, 106, 421-424.	2.3	40
57	Involvement of the Leishmania donovani virulence factor A2 in protection against heat and oxidative stress. Experimental Parasitology, 2012, 132, 109-115.	1.2	29
58	Deletion of an ATP-binding cassette protein subfamily C transporter in Leishmania donovani results in increased virulence. Molecular and Biochemical Parasitology, 2012, 185, 165-169.	1.1	8
59	Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. Journal of Medical Microbiology, 2011, 60, 1248-1260.	1.8	28
60	Visceral leishmaniasis: elimination with existing interventions. Lancet Infectious Diseases, The, 2011, 11, 322-325.	9.1	109
61	Intracellular Eukaryotic Parasites Have a Distinct Unfolded Protein Response. PLoS ONE, 2011, 6, e19118.	2.5	45
62	Expression of a Leishmania donovani nucleotide sugar transporter in Leishmania major enhances survival in visceral organs. Experimental Parasitology, 2011, 129, 337-345.	1.2	15
63	Localization and induction of the A2 virulence factor in <i>Leishmania</i> : evidence that A2 is a stress response protein. Molecular Microbiology, 2010, 77, 518-530.	2.5	60
64	Screening <i>Leishmania donovani</i> â€specific genes required for visceral infection. Molecular Microbiology, 2010, 77, 505-517.	2.5	42
65	First-Line Therapy for Human Cutaneous Leishmaniasis in Peru Using the TLR7 Agonist Imiquimod in Combination with Pentavalent Antimony. PLoS Neglected Tropical Diseases, 2009, 3, e491.	3.0	65
66	Immunization with a Toll-Like Receptor 7 and/or 8 Agonist Vaccine Adjuvant Increases Protective Immunity against <i>Leishmania major</i> in BALB/c Mice. Infection and Immunity, 2008, 76, 3777-3783.	2.2	94
67	Comparison of the Effects of <i>Leishmania major</i> or <i>Leishmania donovani</i> Infection on Macrophage Gene Expression. Infection and Immunity, 2008, 76, 1186-1192.	2.2	81
68	A Genomic-Based Approach Combining In Vivo Selection in Mice to Identify a Novel Virulence Gene in Leishmania. PLoS Neglected Tropical Diseases, 2008, 2, e248.	3.0	25
69	Role of Imiquimod and Parenteral Meglumine Antimoniate in the Initial Treatment of Cutaneous Leishmaniasis. Clinical Infectious Diseases, 2007, 44, 1549-1554.	5.8	91
70	Viral load of episomal and integrated forms of human papillomavirus type 33 in highâ€grade squamous intraepithelial lesions of the uterine cervix. International Journal of Cancer, 2007, 121, 2674-2681.	5.1	14
71	Identification and Characterization of a Protein-tyrosine Phosphatase in Leishmania. Journal of Biological Chemistry, 2006, 281, 36257-36268.	3.4	39
72	Human Papillomavirus Type 33 Polymorphisms and Highâ€Grade Squamous Intraepithelial Lesions of the Uterine Cervix. Journal of Infectious Diseases, 2006, 194, 886-894.	4.0	33

#	Article	IF	CITATIONS
73	Development of a Genetic Assay to Distinguish between Leishmania viannia Species on the Basis of Isoenzyme Differences. Clinical Infectious Diseases, 2006, 42, 801-809.	5.8	34
74	Involvement of Nuclear Export in Human Papillomavirus Type 18 E6-Mediated Ubiquitination and Degradation of p53. Journal of Virology, 2005, 79, 8773-8783.	3.4	33
75	Regulation of Human p53 Activity and Cell Localization by Alternative Splicing. Molecular and Cellular Biology, 2004, 24, 7987-7997.	2.3	197
76	Control of α Subunit of Eukaryotic Translation Initiation Factor 2 (elF2α) Phosphorylation by the Human Papillomavirus Type 18 E6 Oncoprotein: Implications for elF2α-Dependent Gene Expression and Cell Death. Molecular and Cellular Biology, 2004, 24, 3415-3429.	2.3	93
77	In vivo selection for Leishmania donovani miniexon genes that increase virulence in Leishmania majorâ€. Molecular Microbiology, 2004, 54, 1051-1062.	2.5	14
78	Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18. Journal of General Virology, 2004, 85, 1419-1426.	2.9	27
79	Heterologous expression of a mammalian protein tyrosine phosphatase gene in Leishmania: effect on differentiation. Molecular Microbiology, 2003, 50, 1517-1526.	2.5	16
80	Comparison of the A2 Gene Locus in Leishmania donovani and Leishmania major and Its Control over Cutaneous Infection. Journal of Biological Chemistry, 2003, 278, 35508-35515.	3.4	99
81	Immune Responses Induced by the Leishmania (Leishmania) donovani A2 Antigen, but Not by the LACK Antigen, Are Protective against Experimental Leishmania (Leishmania) amazonensis Infection. Infection and Immunity, 2003, 71, 3988-3994.	2.2	220
82	Diagnosis of American visceral leishmaniasis in humans and dogs using the recombinant Leishmania donovani A2 antigen. Diagnostic Microbiology and Infectious Disease, 2002, 43, 289-295.	1.8	86
83	Detection of iNOS gene expression in cutaneous leishmaniasis biopsy tissue. Molecular and Biochemical Parasitology, 2002, 121, 145-147.	1.1	9
84	Successful Treatment of Drugâ€Resistant Cutaneous Leishmaniasis in Humans by Use of Imiquimod, an Immunomodulator. Clinical Infectious Diseases, 2001, 33, 1847-1851.	5.8	158
85	Leishmania infection and virulence. Medical Microbiology and Immunology, 2001, 190, 37-42.	4.8	66
86	Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Molecular Microbiology, 2001, 39, 935-948.	2.5	111
87	Identification of Genes Induced by a Macrophage Activator, S-28463, Using Gene Expression Array Analysis. Antimicrobial Agents and Chemotherapy, 2001, 45, 1137-1142.	3.2	35
88	Clearance of Infection with Mycobacterium bovis BCG in Mice Is Enhanced by Treatment with S28463 (R-848), and Its Efficiency Depends on Expression of Wild-Type Nramp1 (Resistance Allele). Antimicrobial Agents and Chemotherapy, 2001, 45, 3059-3064.	3.2	17
89	General Suppression of Macrophage Gene Expression During <i>Leishmania donovani</i> Infection. Journal of Immunology, 2001, 166, 3416-3422.	0.8	120
90	Analysis of antisense and double stranded RNA downregulation of A2 protein expression in Leishmania donovani. Molecular and Biochemical Parasitology, 2000, 107, 315-319.	1.1	25

#	Article	IF	CITATIONS
91	Two Polymorphic Variants of Wild-Type p53 Differ Biochemically and Biologically. Molecular and Cellular Biology, 1999, 19, 1092-1100.	2.3	633
92	Treatment of Experimental Leishmaniasis with the Immunomodulators Imiquimod and Sâ€28463: Efficacy and Mode of Action. Journal of Infectious Diseases, 1999, 179, 1485-1494.	4.0	148
93	p53: Twenty years on, Meeting Review. Oncogene, 1999, 18, 7618-7620.	5.9	8
94	Design and methods of the Ludwig-McGill longitudinal study of the natural history of human papillomavirus infection and cervical neoplasia in Brazil. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 1999, 6, 223-233.	1.1	80
95	Role of a p53 polymorphism in the development of human papilloma-virus-associated cancer. Nature, 1998, 393, 229-234.	27.8	897
96	p53 polymorphism and risk of cervical cancer. Nature, 1998, 396, 532-532.	27.8	9
97	A2rel: a constitutively expressed Leishmania gene linked to an amastigote-stage-specific gene1Note: The sequence is also available on GenBankâ,,¢, accession number AF016403.1. Molecular and Biochemical Parasitology, 1998, 93, 23-29.	1.1	15
98	Inducible Expression of Suicide Genes in Leishmania donovani Amastigotes. Journal of Biological Chemistry, 1998, 273, 22997-23003.	3.4	29
99	Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani. Molecular and Biochemical Parasitology, 1996, 78, 79-90.	1.1	130
100	The Developmental Expression of A2 Amastigote-specific Genes Is Post-transcriptionally Mediated and Involves Elements Located in the 3′-Untranslated Region. Journal of Biological Chemistry, 1996, 271, 17081-17090.	3.4	120
101	The expression of biologically active human p53 inLeishmaniacells: a novel eukaryotic system to produce recombinant proteins. Nucleic Acids Research, 1995, 23, 4073-4080.	14.5	47
102	<i>Leishmania donovani</i> infection enhances macrophage viability in the absence of exogenous growth factor. Journal of Leukocyte Biology, 1994, 55, 91-98.	3.3	24
103	Molecular analysis of different allelic variants of wild-type human p53. Biochemistry and Cell Biology, 1992, 70, 1014-1019.	2.0	10
104	Identification of a novel Brugia pahangi β-tubulin gene (β2) and a 22-nucleotide spliced leader sequence on β1-tubulin mRNA. Molecular and Biochemical Parasitology, 1992, 50, 275-284.	1.1	16
105	Characterization of a β-tubulin gene and β-tubulin gene products of Brugia pahangi. Molecular and Biochemical Parasitology, 1991, 44, 153-164.	1.1	31
106	Transformation of primary human fibroblast cells with human papillomavirus type 16 DNA and Ej-ras. International Journal of Cancer, 1988, 42, 232-238.	5.1	41
107	Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. FEBS Journal, 1986, 159, 529-534.	0.2	469
108	Analysis of human p53 proteins and mRNA levels in normal and transformed cells. FEBS Journal, 1986, 154, 665-672.	0.2	136

#	Article	IF	CITATIONS
109	The use of monoclonal antibodies for selection of a low-abundance mRNA: p53. Biochemical Society Transactions, 1984, 12, 708-711.	3.4	1