
Daniel J Garry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6688152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12313-12318.	7.1	1,652
2	Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 2001, 91, 534-551.	2.5	1,359
3	Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Developmental Biology, 2004, 265, 262-275.	2.0	636
4	Muscle stem cells in development, regeneration, and disease. Genes and Development, 2006, 20, 1692-1708.	5.9	456
5	Myoglobin: an essential hemoprotein in striated muscle. Journal of Experimental Biology, 2004, 207, 3441-3446.	1.7	330
6	Dystrophin-Deficient Cardiomyopathy. Journal of the American College of Cardiology, 2016, 67, 2533-2546.	2.8	272
7	Mice without myoglobin. Nature, 1998, 395, 905-908.	27.8	270
8	LXRs regulate the balance between fat storage and oxidation. Cell Metabolism, 2005, 1, 231-244.	16.2	268
9	DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics, 2018, 19, 220.	2.6	258
10	Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiological Genomics, 2003, 14, 261-271.	2.3	232
11	Nkx2–5 transactivates the <i>Ets-related protein 71</i> gene and specifies an endothelial/endocardial fate in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 814-819.	7.1	195
12	Acquisition of a Quantitative, Stoichiometrically Conserved Ratiometric Marker of Maturation Status in Stem Cell-Derived Cardiac Myocytes. Stem Cell Reports, 2014, 3, 594-605.	4.8	195
13	Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell, 2016, 18, 354-367.	11.1	165
14	Mesp1 Patterns Mesoderm into Cardiac, Hematopoietic, or Skeletal Myogenic Progenitors in a Context-Dependent Manner. Cell Stem Cell, 2013, 12, 587-601.	11.1	157
15	A Common Progenitor at the Heart of Development. Cell, 2006, 127, 1101-1104.	28.9	156
16	Oxidative Stress Regulates Left Ventricular PDE5 Expression in the Failing Heart. Circulation, 2010, 121, 1474-1483.	1.6	149
17	Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13624-13629.	7.1	133
18	Hypoxia-Inducible Factor-2α Transactivates Abcg2 and Promotes Cytoprotection in Cardiac Side Population Cells. Circulation Research, 2008, 102, 1075-1081.	4.5	133

#	Article	IF	CITATIONS
19	Patching the Heart. Circulation Research, 2013, 113, 922-932.	4.5	131
20	Persistent Expression of MNF Identifies Myogenic Stem Cells in Postnatal Muscles. Developmental Biology, 1997, 188, 280-294.	2.0	127
21	Neuroglobin, A Novel Member of the Globin Family, Is Expressed in Focal Regions of the Brain. Journal of Histochemistry and Cytochemistry, 2002, 50, 1591-1598.	2.5	120
22	Cardiogenic small molecules that enhance myocardial repair by stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6063-6068.	7.1	114
23	Cellular and Molecular Regulation of Skeletal Muscle Side Population Cells. Stem Cells, 2004, 22, 1305-1320.	3.2	98
24	ER71 directs mesodermal fate decisions during embryogenesis. Development (Cambridge), 2011, 138, 4801-4812.	2.5	98
25	Inhibition of cardiac lipoprotein utilization by transgenic overexpression of Angptl4 in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1767-1772.	7.1	96
26	Differential Expression of Mitochondrial DNA Replication Factors in Mammalian Tissues. Journal of Biological Chemistry, 1998, 273, 3447-3451.	3.4	87
27	Adaptive Mechanisms That Preserve Cardiac Function in Mice Without Myoglobin. Circulation Research, 2001, 88, 713-720.	4.5	86
28	Clinical outcomes after cardiac transplantation in muscular dystrophy patients. Journal of Heart and Lung Transplantation, 2010, 29, 432-438.	0.6	86
29	Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. Journal of the American College of Cardiology, 2017, 70, 766-775.	2.8	82
30	Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO Journal, 2007, 26, 1902-1912.	7.8	76
31	Transcriptional Regulation of Cardiac Progenitor Cell Populations. Circulation Research, 2004, 95, 389-397.	4.5	75
32	Identification of Direct Serum-response Factor Gene Targets during Me2SO-induced P19 Cardiac Cell Differentiation. Journal of Biological Chemistry, 2005, 280, 19115-19126.	3.4	74
33	Generation of human endothelium in pig embryos deficient in ETV2. Nature Biotechnology, 2020, 38, 297-302.	17.5	74
34	α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochemical and Biophysical Research Communications, 2006, 344, 446-452.	2.1	69
35	Absence of p21CIP Rescues Myogenic Progenitor Cell Proliferative and Regenerative Capacity in Foxk1 Null Mice. Journal of Biological Chemistry, 2003, 278, 4015-4020.	3.4	68
36	Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2 factors. Journal of Cell Science, 2012, 125, 5329-37.	2.0	65

#	Article	IF	CITATIONS
37	Etv2 Is Expressed in the Yolk Sac Hematopoietic and Endothelial Progenitors and Regulates <i>Lmo2</i> Gene Expression. Stem Cells, 2012, 30, 1611-1623.	3.2	65
38	The winged-helix/forkhead protein myocyte nuclear factor β (MNF-β) forms a co-repressor complex with mammalian Sin3B. Biochemical Journal, 2000, 345, 335-343.	3.7	62
39	Emerging Roles for Myoglobin in the Heart. Trends in Cardiovascular Medicine, 2003, 13, 111-116.	4.9	61
40	Cardiotoxin Induced Injury and Skeletal Muscle Regeneration. Methods in Molecular Biology, 2016, 1460, 61-71.	0.9	59
41	A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nature Communications, 2018, 9, 4237.	12.8	57
42	Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Genesis, 1996, 19, 146-156.	2.1	54
43	Cytoglobin Is a Stress-responsive Hemoprotein Expressed in the Developing and Adult Brain. Journal of Histochemistry and Cytochemistry, 2006, 54, 1349-1361.	2.5	54
44	Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration. Developmental Biology, 2012, 371, 23-34.	2.0	52
45	Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Developmental Biology, 2014, 389, 208-218.	2.0	51
46	Stem cells and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Developmental Biology, 2005, 288, 502-513.	2.0	49
47	Nkx2-5 Represses <i>Gata1</i> Gene Expression and Modulates the Cellular Fate of Cardiac Progenitors During Embryogenesis. Circulation, 2011, 123, 1633-1641.	1.6	48
48	Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiological Genomics, 2007, 30, 44-52.	2.3	45
49	VEGF/Flk1 Signaling Cascade Transactivates Etv2 Gene Expression. PLoS ONE, 2012, 7, e50103.	2.5	44
50	Stem Cell–Derived Cardiomyocytes and Beta-Adrenergic Receptor Blockade in Duchenne Muscular DystrophyÂCardiomyopathy. Journal of the American College of Cardiology, 2020, 75, 1159-1174.	2.8	44
51	Getting to the Heart of Myocardial Stem Cells and Cell Therapy. Circulation, 2011, 123, 1771-1779.	1.6	43
52	Basic and Translational Research in Cardiac Repair and Regeneration. Journal of the American College of Cardiology, 2021, 78, 2092-2105.	2.8	42
53	Etv2 as an essential regulator of mesodermal lineage development. Cardiovascular Research, 2017, 113, 1294-1306.	3.8	41
54	Neuroprotection and the role of neuroglobin. Lancet, The, 2003, 362, 342-343.	13.7	40

#	Article	IF	CITATIONS
55	The winged-helix/forkhead protein myocyte nuclear factor β (MNF-β) forms a co-repressor complex with mammalian Sin3B. Biochemical Journal, 2000, 345, 335.	3.7	39
56	Feedback Mechanisms Regulate Ets Variant 2 (Etv2) Gene Expression and Hematoendothelial Lineages. Journal of Biological Chemistry, 2015, 290, 28107-28119.	3.4	38
57	Foxk1 recruits the Sds3 complex and represses gene expression in myogenic progenitors. Biochemical Journal, 2012, 446, 349-357.	3.7	37
58	Sin3 interacts with Foxk1 and regulates myogenic progenitors. Molecular and Cellular Biochemistry, 2012, 366, 251-258.	3.1	37
59	A critical role for endoglin in the emergence of blood during embryonic development. Blood, 2012, 119, 5417-5428.	1.4	36
60	Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Reviews and Reports, 2015, 11, 710-727.	5.6	34
61	Fhl2 Interacts with Foxk1 and Corepresses Foxo4 Activity in Myogenic Progenitors. Stem Cells, 2010, 28, 462-469.	3.2	33
62	Dpath software reveals hierarchical haemato-endothelial lineages of Etv2 progenitors based on single-cell transcriptome analysis. Nature Communications, 2017, 8, 14362.	12.8	33
63	Integrative effects of dystrophin loss on metabolic function of the mdx mouse. Scientific Reports, 2018, 8, 13624.	3.3	32
64	Nkx2-5 Mediates Differential Cardiac Differentiation Through Interaction with Hoxa10. Stem Cells and Development, 2013, 22, 2211-2220.	2.1	31
65	Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos. Nature Biomedical Engineering, 2021, 5, 805-814.	22.5	31
66	Calcineurin Activates Cytoglobin Transcription in Hypoxic Myocytes. Journal of Biological Chemistry, 2009, 284, 10409-10421.	3.4	30
67	RNA amplification and transcriptional profiling for analysis of stem cell populations. Genesis, 2003, 37, 57-63.	1.6	29
68	Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity. Developmental Biology, 2010, 337, 396-404.	2.0	29
69	Cardiomyopathy in a Dish: Using Human Inducible Pluripotent Stem Cells to Model Inherited Cardiomyopathies. Journal of Cardiac Failure, 2015, 21, 761-770.	1.7	28
70	Hedgehog and Wnt Signaling Pathways Regulate Tail Regeneration. Stem Cells and Development, 2018, 27, 1426-1437.	2.1	28
71	Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nature Communications, 2019, 10, 2316.	12.8	28
72	The Transcription Factor Mesp1 Interacts with cAMP-responsive Element Binding Protein 1 (Creb1) and Coactivates Ets Variant 2 (Etv2) Gene Expression. Journal of Biological Chemistry, 2015, 290, 9614-9625.	3.4	27

#	Article	IF	CITATIONS
73	Loss of peroxiredoxin-2 exacerbates eccentric contraction-induced force loss in dystrophin-deficient muscle. Nature Communications, 2018, 9, 5104.	12.8	27
74	Hedgehog Signaling during Appendage Development and Regeneration. Genes, 2015, 6, 417-435.	2.4	26
75	Myogenic regulatory factors transactivate the <i>Tceal7</i> gene and modulate muscle differentiation. Biochemical Journal, 2010, 428, 213-221.	3.7	25
76	ETV2 functions as a pioneer factor to regulate and reprogram the endothelial lineage. Nature Cell Biology, 2022, 24, 672-684.	10.3	25
77	Are There Really Alternatives to the Use of Fetal Tissue from Elective Abortions in Transplantation Research?. New England Journal of Medicine, 1992, 327, 1592-1595.	27.0	24
78	Epidermolysis bullosa acquisita induced by GM-CSF: a role for eosinophils in treatment-related toxicity. British Journal of Haematology, 1992, 81, 27-32.	2.5	24
79	Molecular Insights into the Functional Role of Myoglobin. Advances in Experimental Medicine and Biology, 2007, 618, 181-193.	1.6	24
80	Cardiac Regeneration. Circulation Research, 2004, 95, 852-854.	4.5	23
81	<i>Sox7</i> ls Regulated by ETV2 During Cardiovascular Development. Stem Cells and Development, 2014, 23, 2004-2013.	2.1	23
82	Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biology, 2019, 17, e3000153.	5.6	23
83	Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis. PLoS ONE, 2017, 12, e0189010.	2.5	22
84	Etv2 rescues <i>Flk1</i> mutant embryoid bodies. Genesis, 2013, 51, 471-480.	1.6	21
85	The Etv2-miR-130a Network Regulates Mesodermal Specification. Cell Reports, 2015, 13, 915-923.	6.4	21
86	Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data. BMC Bioinformatics, 2015, 16, 74.	2.6	20
87	Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit ⁺ Cells. Circulation, 2017, 136, 2359-2372.	1.6	20
88	Transcriptional Pathways Direct Cardiac Development and Regeneration. Trends in Cardiovascular Medicine, 2006, 16, 234-240.	4.9	19
89	Regenerative biology: a historical perspective and modern applications. Regenerative Medicine, 2008, 3, 63-82.	1.7	19
90	Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis. Stem Cells, 2013, 31, 1893-1901.	3.2	18

#	Article	IF	CITATIONS
91	Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2. Nature Communications, 2016, 7, 13101.	12.8	18
92	TCM visualizes trajectories and cell populations from single cell data. Nature Communications, 2018, 9, 2749.	12.8	18
93	Kbtbd5 is regulated by MyoD and restricted to the myogenic lineage. Differentiation, 2013, 86, 184-191.	1.9	17
94	Lift NIH restrictions on chimera research. Science, 2015, 350, 640-640.	12.6	17
95	Gene deletional strategies reveal novel physiological roles for myoglobin in striated muscle. Respiratory Physiology and Neurobiology, 2006, 151, 151-158.	1.6	16
96	Bone-Marrow-Derived Side Population Cells for Myocardial Regeneration. Journal of Cardiovascular Translational Research, 2009, 2, 173-181.	2.4	16
97	Kelch Repeat and BTB Domain Containing Protein 5 (Kbtbd5) Regulates Skeletal Muscle Myogenesis through the E2F1-DP1 Complex. Journal of Biological Chemistry, 2015, 290, 15350-15361.	3.4	16
98	Interspecies Chimeras and the Generation of Humanized Organs. Circulation Research, 2019, 124, 23-25.	4.5	16
99	Etv2 IS A MASTER REGULATOR OF HEMATOENDOTHELIAL LINEAGES. Transactions of the American Clinical and Climatological Association, 2016, 127, 212-223.	0.5	16
100	Ultrastructural immunocytochemical localization of l-glutamate decarboxylase and GABA in rat pancreatic zymogen granules. Cell and Tissue Research, 1988, 252, 191-7.	2.9	13
101	Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Scientific Reports, 2019, 9, 9736.	3.3	13
102	ETV2 (Ets Variant Transcription Factor 2)- <i>Rhoj</i> Cascade Regulates Endothelial Progenitor Cell Migration During Embryogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2875-2890.	2.4	13
103	Stem cell biology and therapeutic applications. Current Opinion in Nephrology and Hypertension, 2003, 12, 447-454.	2.0	11
104	Single Nucleus Transcriptomics: Apical Resection in Newborn Pigs Extends the Time Window of Cardiomyocyte Proliferation and Myocardial Regeneration. Circulation, 2022, 145, 1744-1747.	1.6	11
105	<i>Abcg2</i> â€expressing side population cells contribute to cardiomyocyte renewal through fusion. FASEB Journal, 2020, 34, 5642-5657.	0.5	9
106	Ponce de Leon's Fountain: Stem Cells and the Regenerating Heart. American Journal of the Medical Sciences, 2005, 329, 190-201.	1.1	6
107	Alternative Therapies for Orthotopic Heart Transplantation. American Journal of the Medical Sciences, 2005, 330, 88-101.	1.1	6
108	Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Developmental Biology, 2018, 434, 74-83.	2.0	6

#	Article	IF	CITATIONS
109	Foxk1 regulates cancer progression. Annals of Translational Medicine, 2020, 8, 1041-1041.	1.7	5
110	Chimeric Humanized Vasculature and Blood: The Intersection of Science and Ethics. Stem Cell Reports, 2020, 14, 538-540.	4.8	5
111	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluationâ€. Genome Biology, 2021, 22, 99.	8.8	4
112	Interspecies chimeras as a platform for exogenic organ production and transplantation. Experimental Biology and Medicine, 2021, 246, 1838-1844.	2.4	4
113	Radioimmunoassay for Rat Pancreatic a-Amylase and the Effect of Phe-Met-Arg-Phe-Amide on Amylase Secretion in the Isolated Perfused Rat Pancreas. Pancreas, 1988, 3, 551-558.	1.1	3
114	Somatic Cell Therapy for Chronic Heart Failure: In Search of Mechanistic Insights. Journal of Cardiac Failure, 2015, 21, 583-585.	1.7	3
115	ETV2-null porcine embryos survive to post-implantation following incomplete enucleation. Reproduction, 2020, 159, 539-547.	2.6	3
116	Molecular Signatures Define Myogenic Stem Cell Populations. Stem Cell Reviews and Reports, 2006, 2, 37-42.	5.6	3
117	Successful Health Care Delivery Using Ambulatory Hospitals—Past, Present, and Future. American Journal of Medicine, 2020, 133, e539-e540.	1.5	2
118	Innovations in Twenty-First Century Cardiovascular Medicine. , 2012, , 509-523.		2
119	The Lillehei Heart Institute: Building on the Shoulders of Giants. Journal of Cardiovascular Translational Research, 2008, 1, 273-277.	2.4	1
120	A Resuscitation of Bretylium?. American Journal of Therapeutics, 2009, 16, 480-481.	0.9	1
121	Emerging Therapies for DystrophicÂCardiomyopathy. JACC Basic To Translational Science, 2019, 4, 792-794.	4.1	1
122	Decoding DMD transcriptional networks using singleâ€nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32192-32194.	7.1	1
123	History of Cardiac Transplantation: Research, Discoveries, and Pioneers. , 2017, , 417-429.		1
124	Cardiac Transplantation and the Use of Cannabis. Life, 2021, 11, 1063.	2.4	1
125	Dystrophic Cardiomyopathy and the Need for Cardiovascular Care. Journal of Cardiac Failure, 2022, 28, 1040-1041.	1.7	1
126	Correction to: "Alternative Therapies for Orthotopic Heart Transplanation― American Journal of the Medical Sciences, 2005, 330, 119.	1.1	0

#	Article	IF	CITATIONS
127	Go to the Mattresses. Circulation Research, 2015, 117, 982-983.	4.5	Ο
128	Hearts and Hands: the good, the bad, and the ugly. Cardiovascular Research, 2020, 116, 470-472.	3.8	0
129	Biologically Derived, Three-Dimensional, Embryonic Scaffolds for Long-Term Cardiomyocyte Culture. Stem Cells and Development, 2021, 30, 697-704.	2.1	Ο
130	Right Heart Failure. , 2017, , 161-173.		0
131	Dystrophic cardiomyopathy and patients with muscular dystrophies. Journal of Cardiac Failure, 2022, ,	1.7	Ο