
Gregory J Bix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6687760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Dose, Infection, and Disease Outcomes for Coronavirus Disease 2019 (COVID-19): A Review. Clinical Infectious Diseases, 2022, 75, e1195-e1201.	5.8	13
2	Aging related impairment of brain microvascular bioenergetics involves oxidative phosphorylation and glycolytic pathways. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1410-1424.	4.3	18
3	Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nature Communications, 2022, 13, 1745.	12.8	108
4	Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 856261.	3.7	37
5	Integrins as Therapeutic Targets for SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	7
6	Perlecan Domain-V Enhances Neurogenic Brain Repair After Stroke in Mice. Translational Stroke Research, 2021, 12, 72-86.	4.2	27
7	Diabetes Mellitus/Poststroke Hyperglycemia: a Detrimental Factor for tPA Thrombolytic Stroke Therapy. Translational Stroke Research, 2021, 12, 416-427.	4.2	29
8	The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection. JACC Basic To Translational Science, 2021, 6, 1-8.	4.1	73
9	Neurogenesis After Stroke: A Therapeutic Perspective. Translational Stroke Research, 2021, 12, 1-14.	4.2	79
10	SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine and Growth Factor Reviews, 2021, 58, 1-15.	7.2	84
11	The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. International Journal of Molecular Sciences, 2021, 22, 5583.	4.1	23
12	ATN-161 Ameliorates Ischemia/Reperfusion-induced Oxidative Stress, Fibro-inflammation, Mitochondrial damage, and Apoptosis-mediated Tight Junction Disruption in bEnd.3 Cells. Inflammation, 2021, 44, 2377-2394.	3.8	14
13	Intraâ€arterial combination therapy for experimental acute ischemic stroke. Clinical and Translational Science, 2021, , .	3.1	2
14	In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sciences, 2021, 284, 119881.	4.3	22
15	Basal lamina changes in neurodegenerative disorders. Molecular Neurodegeneration, 2021, 16, 81.	10.8	28
16	Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1695-1708.	4.3	34
17	Biomarker Application for Precision Medicine in Stroke. Translational Stroke Research, 2020, 11, 615-627.	4.2	57
18	Intrarenal Renin Angiotensin System Imbalance During Postnatal Life Is Associated With Increased Microvascular Density in the Mature Kidney. Frontiers in Physiology, 2020, 11, 1046.	2.8	2

Gregory J Bix

#	Article	IF	CITATIONS
19	In the Age of COVID. JACC Basic To Translational Science, 2020, 5, 1124-1126.	4.1	Ο
20	Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. Journal of Neuroimmunology, 2020, 346, 577318.	2.3	24
21	Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. International Journal of Molecular Sciences, 2020, 21, 679.	4.1	5
22	The Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC) protocol: novel method for evaluating human stroke. Journal of NeuroInterventional Surgery, 2019, 11, 265-270.	3.3	39
23	Absence of endothelial α5β1 integrin triggers early onset of experimental autoimmune encephalomyelitis due to reduced vascular remodeling and compromised vascular integrity. Acta Neuropathologica Communications, 2019, 7, 11.	5.2	12
24	The Inflammatory Response After Ischemic Stroke: Targeting β2 and β1 Integrins. Frontiers in Neuroscience, 2019, 13, 540.	2.8	24
25	Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. Journal of Neuroinflammation, 2019, 16, 222.	7.2	39
26	Roles of blood-brain barrier integrins and extracellular matrix in stroke. American Journal of Physiology - Cell Physiology, 2019, 316, C252-C263.	4.6	51
27	Inhibition of α 5 β 1 integrin with the clinically validated small peptide, ATNâ€161 stabilizes cerebral vasculature, reduces inflammation, and decreases bloodâ€brain barrier permeability after experimental ischemic stroke. FASEB Journal, 2019, 33, 680.4.	0.5	0
28	Intra-arterial nitroglycerin as directed acute treatment in experimental ischemic stroke. Journal of NeuroInterventional Surgery, 2018, 10, 29-33.	3.3	20
29	Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS ONE, 2018, 13, e0195765.	2.5	32
30	Internal carotid artery stenosis: A novel surgical model for moyamoya syndrome. PLoS ONE, 2018, 13, e0191312.	2.5	11
31	Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 85-96.	4.3	43
32	Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3531-3543.	4.3	46
33	Correcting the Trajectory of Stroke Therapeutic Research. Translational Stroke Research, 2017, 8, 65-66.	4.2	9
34	<scp>IL</scp> â€lalpha induces angiogenesis in brain endothelial cells <i>inÂvitro</i> : implications for brain angiogenesis after acute injury. Journal of Neurochemistry, 2016, 136, 573-580.	3.9	38
35	Stroke neuroprotection revisited: Intra-arterial verapamil is profoundly neuroprotective in experimental acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 721-730.	4.3	41
36	The potential role of perlecan domain V as novel therapy in vascular dementia. Metabolic Brain Disease, 2015, 30, 1-5.	2.9	17

Gregory J Bix

#	Article	IF	CITATIONS
37	Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: From review to preview. Clinical Neurology and Neurosurgery, 2015, 129, 1-9.	1.4	86
38	Selective intra-arterial drug administration in a model of large vessel ischemia. Journal of Neuroscience Methods, 2015, 240, 22-27.	2.5	11
39	Brain endothelial cell specific integrins and ischemic stroke. Expert Review of Neurotherapeutics, 2014, 14, 1287-1292.	2.8	37
40	Investigating the Role of Perlecan Domain V in Post-Ischemic Cerebral Angiogenesis. Methods in Molecular Biology, 2014, 1135, 331-341.	0.9	11
41	Perlecan Domain V Is Neuroprotective and Affords Functional Improvement in a Photothrombotic Stroke Model in Young and Aged Mice. Translational Stroke Research, 2013, 4, 515-523.	4.2	30
42	Perlecan Domain V Therapy for Stroke: A Beacon of Hope?. ACS Chemical Neuroscience, 2013, 4, 370-374.	3.5	18
43	Perlecan Domain V Inhibits Amyloid-β Induced Brain Endothelial Cell Toxicity and Restores Angiogenic Function. Journal of Alzheimer's Disease, 2013, 38, 415-423.	2.6	19
44	Perlecan and the Blood-Brain Barrier: Beneficial Proteolysis?. Frontiers in Pharmacology, 2012, 3, 155.	3.5	53
45	Oxygen–glucose deprivation (OGD) and interleukin-1 (IL-1) differentially modulate cathepsin B/L mediated generation of neuroprotective perlecan LG3 by neurons. Brain Research, 2012, 1438, 65-74.	2.2	36
46	Perlecan Domain V Induces VEGf Secretion in Brain Endothelial Cells through Integrin α5β1 and ERK-Dependent Signaling Pathways. PLoS ONE, 2012, 7, e45257.	2.5	47
47	Oxygen–glucose deprivation and interleukinâ€1α trigger the release of perlecan LG3 by cells of neurovascular unit. Journal of Neurochemistry, 2011, 119, 760-771.	3.9	29
48	Perlecan domain V modulates astrogliosis <i>In vitro</i> and after focal cerebral ischemia through multiple receptors and increased nerve growth factor release. Glia, 2011, 59, 1822-1840.	4.9	33
49	Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents. Journal of Clinical Investigation, 2011, 121, 3005-3023.	8.2	133
50	Novel interactions of perlecan: Unraveling perlecan's role in angiogenesis. Microscopy Research and Technique, 2008, 71, 339-348.	2.2	85
51	Endorepellin, the C-terminal angiostatic module of perlecan, enhances collagen-platelet responses via the α2l²1-integrin receptor. Blood, 2007, 109, 3745-3748.	1.4	61
52	Endorepellin In Vivo: Targeting the Tumor Vasculature and Retarding Cancer Growth and Metabolism. Journal of the National Cancer Institute, 2006, 98, 1634-1646.	6.3	106
53	Matrix revolutions: â€~tails' of basement-membrane components with angiostatic functions. Trends in Cell Biology, 2005, 15, 52-60.	7.9	119
54	BMP-1/Tolloid-like Metalloproteases Process Endorepellin, the Angiostatic C-terminal Fragment of Perlecan. Journal of Biological Chemistry, 2005, 280, 7080-7087.	3.4	159

#	Article	IF	CITATIONS
55	Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. Journal of Cell Biology, 2004, 166, 97-109.	5.2	243