
Edouard I Azzam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6686893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lonizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 2012, 327, 48-60.	7.2	1,019
2	Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer and Metastasis Reviews, 2004, 23, 311-322.	5.9	584
3	Intercellular Communication Is Involved in the Bystander Regulation of Gene Expression in Human Cells Exposed to Very Low Fluences of Alpha Particles. Radiation Research, 1998, 150, 497.	1.5	431
4	Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene, 2003, 22, 7050-7057.	5.9	288
5	Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Research, 2002, 62, 5436-42.	0.9	262
6	Long-Term Consequences of Radiation-Induced Bystander Effects Depend on Radiation Quality and Dose and Correlate with Oxidative Stress. Radiation Research, 2011, 175, 405-415.	1.5	130
7	Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Research, 2003, 63, 7128-35.	0.9	118
8	Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sciences in Space Research, 2016, 8, 38-51.	2.3	112
9	Adaptive Responses to Low-Dose/Low-Dose-Rate γ Rays in Normal Human Fibroblasts: The Role of Growth Architecture and Oxidative Metabolism. Radiation Research, 2006, 166, 849-857.	1.5	106
10	Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E926-33.	7.1	78
11	Gap Junction Communication and the Propagation of Bystander Effects Induced by Microbeam Irradiation in Human Fibroblast Cultures: The Impact of Radiation Quality. Radiation Research, 2013, 180, 367-375.	1.5	66
12	ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation. Oncogene, 2000, 19, 6185-6193.	5.9	62
13	Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells. International Journal of Radiation Biology, 2010, 86, 102-113.	1.8	61
14	The Role of Gap Junction Communication and Oxidative Stress in the Propagation of Toxic Effects among High-Dose α-Particle-Irradiated Human Cells. Radiation Research, 2011, 175, 347-357.	1.5	57
15	High-LET Ion Radiolysis of Water: Visualization of the Formation and Evolution of Ion Tracks and Relevance to the Radiation-Induced Bystander Effect. Radiation Research, 2006, 165, 485-491.	1.5	54
16	Propagation Distance of the α-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication. Radiation Research, 2009, 171, 513-520.	1.5	49
17	A Multi-port Low-Fluence Alpha-Particle Irradiator: Fabrication, Testing and Benchmark Radiobiological Studies. Radiation Research, 2004, 161, 732-738.	1.5	46
18	In Vivo Space Radiation-Induced Non-Targeted Responses: Late Effects on Molecular Signaling in Mitochondria. Current Molecular Pharmacology, 2011, 4, 106-114.	1.5	46

Edouard I Azzam

#	Article	IF	CITATIONS
19	Normal Human Fibroblasts Exposed to High- or Low-Dose Ionizing Radiation: Differential Effects on Mitochondrial Protein Import and Membrane Potential. Antioxidants and Redox Signaling, 2006, 8, 1253-1261.	5.4	45
20	The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for Proton and Heavy Ion Radiotherapy. Radiation Research, 2019, 193, 1.	1.5	43
21	Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. Journal of Radiation Research, 2015, 56, 502-508.	1.6	41
22	Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles. Antioxidants and Redox Signaling, 2014, 20, 1501-1523.	5.4	40
23	Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. Mutation Research - Reviews in Mutation Research, 2014, 760, 1-17.	5.5	40
24	Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: The relevance to cancer risk. International Journal of Radiation Biology, 2015, 91, 62-70.	1.8	37
25	Increased Frequency of Spontaneous Neoplastic Transformation in Progeny of Bystander Cells from Cultures Exposed to Densely Ionizing Radiation. PLoS ONE, 2011, 6, e21540.	2.5	37
26	Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment. Radiation Research, 2020, 194, 587-593.	1.5	35
27	Dose-Dependent Growth Delay of Breast Cancer Xenografts in the Bone Marrow of Mice Treated with ²²³ Ra: The Role of Bystander Effects and Their Potential for Therapy. Journal of Nuclear Medicine, 2020, 61, 89-95.	5.0	34
28	ls Ionizing Radiation Harmful at any Exposure? An Echo That Continues to Vibrate. Health Physics, 2016, 110, 249-251.	0.5	32
29	Delayed activation of human microglial cells by high dose ionizing radiation. Brain Research, 2016, 1646, 193-198.	2.2	29
30	Acquired radioresistance in cancer associated fibroblasts is concomitant with enhanced antioxidant potential and DNA repair capacity. Cell Communication and Signaling, 2021, 19, 30.	6.5	27
31	Expression of NES-hTERT in Cancer Cells Delays Cell Cycle Progression and Increases Sensitivity to Genotoxic Stress. PLoS ONE, 2010, 5, e10812.	2.5	25
32	Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. International Journal of Radiation Biology, 2017, 93, 1182-1194.	1.8	24
33	Adaptive and Bystander Responses in Human and Rodent Cell Cultures Exposed to Low Level Ionizing Radiation: The Impact of Linear Energy Transfer. Dose-Response, 2006, 4, dose-response.0.	1.6	21
34	Human cell responses to ionizing radiation are differentially affected by the expressed connexins. Journal of Radiation Research, 2013, 54, 251-259.	1.6	21
35	Extracellular vesicles originating from glioblastoma cells increase metalloproteinase release by astrocytes: the role of CD147 (EMMPRIN) and ionizing radiation. Cell Communication and Signaling, 2020, 18, 21.	6.5	21
36	Intercellular Communication Amplifies Stressful Effects in High-Charge, High-Energy (HZE) Particle-Irradiated Human Cells. Journal of Radiation Research, 2011, 52, 408-414.	1.6	20

Edouard I Azzam

#	Article	IF	CITATIONS
37	Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations. Radiation Research, 2013, 179, 444.	1.5	20
38	What does radiation biology tell us about potential health effects at low dose and low dose rates?. Journal of Radiological Protection, 2019, 39, S28-S39.	1.1	20
39	lonizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro, 2015, 7, 175909141557802.	2.7	18
40	Adverse outcome pathways, key events, and radiation risk assessment. International Journal of Radiation Biology, 2021, 97, 804-814.	1.8	17
41	Cyclophilin A Inhibitor Debio-025 Targets Crk, Reduces Metastasis, and Induces Tumor Immunogenicity in Breast Cancer. Molecular Cancer Research, 2020, 18, 1189-1201.	3.4	14
42	Radium-223–Induced Bystander Effects Cause DNA Damage and Apoptosis in Disseminated Tumor Cells in Bone Marrow. Molecular Cancer Research, 2021, 19, 1739-1750.	3.4	13
43	THE IMPACT OF ADAPTIVE AND NON-TARGETED EFFECTS IN THE BIOLOGICAL RESPONSES TO LOW DOSE/LOW FLUENCE IONIZING RADIATION: THE MODULATING EFFECT OF LINEAR ENERGY TRANSFER. Health Physics, 2011, 100, 290-292.	0.5	12
44	Effect of densely ionizing radiation on cardiomyocyte differentiation from human-induced pluripotent stem cells. Physiological Reports, 2017, 5, e13308.	1.7	12
45	Exposure to low level environmental agents: The induction of hormesis. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 726, 89-90.	1.7	11
46	Diffusible Factors Secreted by Glioblastoma and Medulloblastoma Cells Induce Oxidative Stress in Bystander Neural Stem Progenitors. ASN Neuro, 2016, 8, 175909141666280.	2.7	11
47	The effect of human cord blood therapy on the intestinal tract of lethally irradiated mice: Possible use for mass casualties. International Journal of Radiation Biology, 2010, 86, 467-475.	1.8	9
48	High Levels of Dietary Supplement Vitamins A, C and E are Absorbed in the Small Intestine and Protect Nutrient Transport Against Chronic Gamma Irradiation. Radiation Research, 2015, 184, 470.	1.5	8
49	The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance. , 2013, , 35-61.		7
50	A Mimic of the Tumor Microenvironment: A Simple Method for Generating Enriched Cell Populations and Investigating Intercellular Communication. Journal of Visualized Experiments, 2016, , .	0.3	7
51	The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results and Problems in Cell Differentiation, 2017, 64, 227-253.	0.7	6
52	Modeling bystander effects that cause growth delay of breast cancer xenografts in bone marrow of mice treated with radium-223. International Journal of Radiation Biology, 2021, 97, 1217-1228.	1.8	6
53	The intercellular communications mediating radiation-induced bystander effects and their relevance to environmental, occupational, and therapeutic exposures. International Journal of Radiation Biology, 2023, 99, 964-982.	1.8	6
54	S-Nitrosylation in Organs of Mice Exposed to Low or High Doses of Î ³ -Rays: The Modulating Effect of Iodine Contrast Agent at a Low Radiation Dose. Proteomes, 2015, 3, 56-73.	3.5	4

#	Article	IF	CITATIONS
55	Cell Cycle Deregulation and Xeroderma Pigmentosum Group C Cell Transformation. Journal of Investigative Dermatology, 2002, 119, 1350-1354.	0.7	2
56	Response to the Letter by Colin Seymour and Carmel Mothersill. Radiation Research, 1999, 151, 505.	1.5	0
57	John B. Little, 5 October 1929–24 May 2020. International Journal of Radiation Biology, 2020, 96, 1085-1086.	1.8	0