Thomas P Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6684798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Further mid-infrared study of the rho Ophiuchi cloud young stellar population: Luminosities and masses of pre-main-sequence stars. Astrophysical Journal, 1994, 434, 614.	4.5	368
2	CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST. Astrophysical Journal, 2016, 817, 17.	4.5	356
3	The Mid-Infrared Instrument for the <i>James Webb Space Telescope</i> , I: Introduction. Publications of the Astronomical Society of the Pacific, 2015, 127, 584-594.	3.1	244
4	PandExo: A Community Tool for Transiting Exoplanet Science with <i>JWST</i> & <i>HST</i> . Publications of the Astronomical Society of the Pacific, 2017, 129, 064501.	3.1	230
5	Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2009, 121, 952-967.	3.1	210
6	A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS. Astrophysical Journal, 2013, 775, 80.	4.5	208
7	Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b. Astrophysical Journal Letters, 2019, 887, L14.	8.3	183
8	MAGNETIC BRAKING FORMULATION FOR SUN-LIKE STARS: DEPENDENCE ON DIPOLE FIELD STRENGTH AND ROTATION RATE. Astrophysical Journal Letters, 2012, 754, L26.	8.3	175
9	CSHELL: a high spectral resolution 1-5-î¼m cryogenic echelle spectrograph for the IRTF. , 1993, , .		151
10	Optical Spectroscopy of the Surface Population of the ϕOphiuchi Molecular Cloud: The First Wave of Star Formation. Astronomical Journal, 2005, 130, 1733-1751.	4.7	147
11	Near-Infrared Spectra and the Evolutionary Status of Young Stellar Objects: Results of a 1.1-2.4 (??) Survey. Astronomical Journal, 1996, 112, 2184.	4.7	143
12	Spectroscopy of Brown Dwarf Candidates in the ϕOphiuchi Molecular Core. Astronomical Journal, 1999, 117, 469-482.	4.7	139
13	Astrophysics of Young Star Binaries. Astrophysical Journal, 2003, 584, 853-874.	4.5	133
14	Characterizing Transiting Planet Atmospheres through 2025. Publications of the Astronomical Society of the Pacific, 2015, 127, 311-327.	3.1	121
15	An Infrared Spectroscopic Survey of the rho Ophiuchi Young Stellar Cluster: Masses and Ages from the H-R Diagram. Astrophysical Journal, 1995, 450, 233.	4.5	120
16	A NEAR-INFRARED SPECTROSCOPIC SURVEY OF CLASS I PROTOSTARS. Astronomical Journal, 2010, 140, 1214-1240.	4.7	115
17	The Mid-Infrared Instrument for the <i>James Webb Space Telescope</i> , II: Design and Build. Publications of the Astronomical Society of the Pacific, 2015, 127, 595-611.	3.1	113
18	The Physical Natures of Class I and Flat-Spectrum Protostellar Photospheres: A Near-Infrared Spectroscopic Study, Astronomical Journal, 2005, 130, 1145-1170,	4.7	104

#	Article	IF	CITATIONS
19	The Transiting Exoplanet Community Early Release Science Program for <i>JWST</i> . Publications of the Pacific, 2018, 130, 114402.	3.1	100
20	Near-infrared observations of young stellar objects in the Rho Ophiuchi dark cloud. Astrophysical Journal, 1992, 395, 516.	4.5	99
21	Transiting Exoplanet Studies and Community Targets for <i>JWST</i> 's Early Release Science Program. Publications of the Astronomical Society of the Pacific, 2016, 128, 094401.	3.1	98
22	Three's Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets. Astronomical Journal, 2017, 154, 122.	4.7	90
23	TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE <i>JAMES WEBB SPACE TELESCOPE </i> Astrophysical Journal, 2011, 727, 65.	4.5	78
24	The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval. Astrophysical Journal, 2017, 848, 127.	4.5	74
25	Infrared images of the young cluster NGC 2264. Astrophysical Journal, 1993, 408, 471.	4.5	70
26	SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS. Astrophysical Journal, 2012, 745, 101.	4.5	65
27	Low-Mass Stars and Substellar Objects in the NGC 1333 Molecular Cloud. Astronomical Journal, 2004, 127, 1131-1146.	4.7	64
28	The Relationship between the Optical Depth of the 9.7 μm Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds. Astrophysical Journal, 2007, 666, L73-L76.	4.5	64
29	SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING. Astrophysical Journal, 2010, 714, 989-1000.	4.5	61
30	The Mid-Infrared Instrument for the <i>James Webb Space Telescope</i> , VII: The MIRI Detectors. Publications of the Astronomical Society of the Pacific, 2015, 127, 665-674.	3.1	60
31	K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities. Astronomical Journal, 2017, 153, 271.	4.7	60
32	A Near-Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds. Astronomical Journal, 2004, 127, 1747-1754.	4.7	56
33	ICES IN THE QUIESCENT IC 5146 DENSE CLOUD. Astrophysical Journal, 2011, 731, 9.	4.5	52
34	Infrared Properties of Weak Radio Sources in the ϕOphiuchi Molecular Cloud. Astrophysical Journal, 2001, 551, 357-366.	4.5	50
35	SPITZER OBSERVATIONS OF EXOPLANETS DISCOVERED WITH THE KEPLER K2 MISSION. Astrophysical Journal, 2016, 822, 39.	4.5	48
36	JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series. Astronomical Journal, 2020, 160, 231.	4.7	48

#	Article	IF	CITATIONS
37	Near-Infrared Spectra of Flat-Spectrum Protostars: Extremely Young Photospheres Revealed. Astronomical Journal, 1997, 114, 2157.	4.7	44
38	IRAS observations of young stellar objects in the Corona Australis dark cloud. Astrophysical Journal, 1992, 397, 520.	4.5	43
39	Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar. Astronomical Journal, 2002, 124, 2185-2193.	4.7	41
40	An Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in the ϕOphiuchi and Serpens Molecular Clouds. Astronomical Journal, 2002, 124, 2841-2852.	4.7	40
41	HIGH-RESOLUTION NEAR-INFRARED SPECTROSCOPY OF FUORS AND FUOR-LIKE STARS. Astronomical Journal, 2008, 135, 1421-1429.	4.7	39
42	Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST). Proceedings of SPIE, 2012, , .	0.8	38
43	FIRST MAGNETIC FIELD DETECTION ON A CLASS I PROTOSTAR. Astrophysical Journal, 2009, 700, 1440-1448.	4.5	32
44	λ = 2.4 to 5    μ m spectroscopy with the James Webb Space Telescope NIRCam instrument. J Astronomical Telescopes, Instruments, and Systems, 2017, 3, 035001.	ournal of	31
45	The Radial Velocity Distribution of Class I and Flat-Spectrum Protostars. Astronomical Journal, 2006, 131, 512-519.	4.7	30
46	The Angular Momentum Content and Evolution of Class I and Flat-Spectrum Protostars. Astronomical Journal, 2005, 129, 2765-2776.	4.7	28
47	Clear and Cloudy Exoplanet Forecasts for JWST: Maps, Retrieved Composition, and Constraints on Formation with MIRI and NIRCam. Astronomical Journal, 2018, 156, 40.	4.7	28
48	JWST Noise Floor. II. Systematic Error Sources in JWST NIRCam Time Series. Astronomical Journal, 2021, 161, 115.	4.7	27
49	IRAS 20050+2720: An Embedded Young Cluster Associated with a Multipolar Outflow. Astrophysical Journal, 1997, 475, 163-172.	4.5	25
50	Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere. Astronomical Journal, 2021, 161, 18.	4.7	25
51	High-Resolution Near-Infrared Spectra of Protostars. Astronomical Journal, 2000, 120, 430-436.	4.7	22
52	Hubble Space TelescopeNICMOS Observations of NGC 1333: The Ratio of Stars to Substellar Objects. Astronomical Journal, 2007, 133, 1321-1330.	4.7	22
53	Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2, 011020.	1.8	19
54	Mid?Infrared Observations of Class I/Flat?Spectrum Systems in Six Nearby Molecular Clouds. Astronomical Journal, 2006, 132, 2675-2684.	4.7	18

#	Article	IF	CITATIONS
55	NEAR-IR SPECTROSCOPIC MONITORING OF CLASS I PROTOSTARS: VARIABILITY OF ACCRETION AND WIND INDICATORS. Astronomical Journal, 2014, 147, 125.	4.7	18
56	Revisiting the HIP 41378 System with K2 and Spitzer. Astronomical Journal, 2019, 157, 185.	4.7	18
57	The Unusually Rich Infrared Emission-Line Spectrum of a Deeply Embedded Low-Luminosity Young Stellar Object. Astrophysical Journal, 1996, 461, 345.	4.5	18
58	NGST NIRCam Scientific Program and Design Concept. , 2003, , .		16
59	NEAR-IR H ₂ EMISSION OF PROTOSTARS: PROBING CIRCUMSTELLAR ENVIRONMENTS. Astrophysical Journal, 2010, 725, 1100-1110.	4.5	15
60	The Mid-Infrared Instrument for the <i>James Webb Space Telescope</i> , X: Operations and Data Reduction. Publications of the Astronomical Society of the Pacific, 2015, 127, 696-711.	3.1	15
61	A spectacular molecular outflow in the Monoceros OB1 molecular cloud. Astrophysical Journal, 1990, 352, 615.	4.5	14
62	Kinematics of the HH 43 Flow: Evidence for a Precessing Jet?. Astronomical Journal, 1999, 117, 456-461.	4.7	14
63	ISM DUST GRAINS ANDN-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur,,. Astrophysical Journal, 2010, 711, 1280-1290.	4.5	13
64	High Spectral Resolution H2Measurements of Herbig-Haro Objects 38, 46/47, and 120. Astronomical Journal, 2003, 126, 339-347.	4.7	12
65	Observing exoplanets with the JWST NIRCam grisms. Proceedings of SPIE, 2007, , .	0.8	12
66	A silicon and KRS-5 grism suite for FORCAST on SOFIA. , 2008, , .		12
67	Photometric Precision of a Si:As Impurity Band Conduction Mid-infrared Detector and Application to Transit Spectroscopy. Publications of the Astronomical Society of the Pacific, 2019, 131, 124502.	3.1	12
68	A Direct Measurement of Atmospheric Dispersion in <i>N</i> -band Spectra: Implications for Mid-IR Systems on ELTs1. Publications of the Astronomical Society of the Pacific, 2009, 121, 897-904.	3.1	11
69	NIRCam: development and testing of the JWST near-infrared camera. , 2010, , .		11
70	Detecting Biosignatures in the Atmospheres of Gas Dwarf Planets with the James Webb Space Telescope. Astrophysical Journal, 2021, 923, 144.	4.5	11
71	V1647 ORIONIS: KECK/NIRSPEC 2 μm ECHELLE OBSERVATIONS. Astronomical Journal, 2009, 137, 2968-2980.	4.7	10
72	DUST GRAIN EVOLUTION IN SPATIALLY RESOLVED T TAURI BINARIES. Astrophysical Journal, 2011, 740, 43.	4.5	10

#	Article	IF	CITATIONS
73	Detection of Photospheric Features in the Near-infrared Spectrum of a Class 0 Protostar. Astrophysical Journal, 2018, 862, 85.	4.5	10
74	Lunar Occultations of Young Stars in Southern Taurus. Astronomical Journal, 1999, 117, 1594-1597.	4.7	10
75	Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam). Proceedings of SPIE, 2016, , .	0.8	9
76	Laboratory demonstration of high-contrast imaging at inner working angles 2 ĥ»/D and better. , 2011, , .		8
77	IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud. Astrophysical Journal, 1989, 339, 258.	4.5	8
78	Laboratory demonstration of high-contrast imaging at 2 λ/D on a temperature-stabilized testbed in air. , 2010, , .		7
79	A Radial Velocity Survey of Embedded Sources in the Rho Ophiuchi Cluster. Astronomical Journal, 2019, 158, 41.	4.7	7
80	A Tidally Interacting Disk in the Young Triple System WL 20?. Astrophysical Journal, 2002, 572, L75-L78.	4.5	7
81	Pointing calibration and reference sensor for the Space Infrared Telescope Facility. , 1998, , .		6
82	Pupil mapping Exoplanet Coronagraphic Observer (PECO). Proceedings of SPIE, 2008, , .	0.8	6
83	The Near-stellar Environment of Class 0 Protostars: A First Look with Near-infrared Spectroscopy. Astrophysical Journal, 2021, 921, 110.	4.5	6
84	EXCEDE technology development I: first demonstrations of high contrast at 1.2 λ/D for an Explorer space telescope mission. Proceedings of SPIE, 2012, , .	0.8	5
85	A highly stable spectrophotometric capability for the Origins Space Telescope (OST) mid-infrared imager, spectrometer, coronagraph (MISC). , 2018, , .		5
86	EXCEDE technology development III: first vacuum tests. , 2014, , .		4
87	Time series observations with the mid-infrared instrument (MIRI) on JWST. , 2018, , .		4
88	The AstroBiology Explorer (ABE) MIDEX Mission Concept: Identifying Organic Molecules in Space. , 2003, , .		3
89	Telescope to Observe Planetary Systems (TOPS): a high throughput 1.2-m visible telescope with a small inner working angle. , 2006, ,		3
90	High Spectral Resolution Near-IR Observations of ESO-Hα 279A and 279B. Astronomical Journal, 2007, 133, 568-575.	4.7	3

#	ARTICLE	IF	CITATIONS
91	Narrow ion-beam figuring: a new tool to address extreme slopes on small surfaces located near telescope pupils. Proceedings of SPIE, 2010, , .	0.8	3
92	EXCEDE technology development II: demonstration of high contrast at 1.2 $\hat{\sf l} {\sf w}/{\sf D}$ and preliminary broadband results. , 2013, , .		2
93	Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe's Expansion History to Characterization of Nearby Habitable Planet Candidates. Astronomical Journal, 2022, 163, 63.	4.7	2
94	<title>Explorer-class astrobiology mission</title> . , 2000, , .		1
95	<title>Detector requirements for NGST</title> . , 2000, , .		1
96	Spectroscopy of Brown Dwarf Candidates in the NGC 1333 Molecular Cloud. Symposium - International Astronomical Union, 2003, 211, 97-102.	0.1	1
97	Narrow ion-beam figuring: a figuring tool that enables new optical systems solutions. Proceedings of SPIE, 2011, , .	0.8	1
98	Observing Exoplanets with the James Webb Space Telescope. , 2018, , 1283-1308.		1
99	TOPS: a small space telescope using phase induced-amplitude apodization (PIAA) to image rocky and giant exo-planets. Proceedings of SPIE, 2007, , .	0.8	0
100	Quick-look reduction software for FORCAST grism mode on SOFIA. , 2010, , .		0
101	Improving image contrast for the direct detection of exoplanets at small inner working angles. , 2013, , .		0
102	Testing of a germanium immersion grating. , 2018, , .		0
103	High-Resolution Near-IR Spectroscopy of Protostars with Large Telescopes. , 0, , 283-290.		0