
Martin R Goodier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6684630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T-Cell Responses after Rotavirus Infection or Vaccination in Children: A Systematic Review. Viruses, 2022, 14, 459.	3.3	6
2	NK Cell Subset Redistribution and Antibody Dependent Activation after Ebola Vaccination in Africans. Vaccines, 2022, 10, 884.	4.4	1
3	Antibody-Dependent Natural Killer Cell Activation After Ebola Vaccination. Journal of Infectious Diseases, 2021, 223, 1171-1182.	4.0	22
4	Regulation of the human NK cell compartment by pathogens and vaccines. Clinical and Translational Immunology, 2021, 10, e1244.	3.8	13
5	Durable natural killer cell responses after heterologous two-dose Ebola vaccination. Npj Vaccines, 2021, 6, 19.	6.0	12
6	Differentiation and adaptation of natural killer cells for antiâ€malarial immunity. Immunological Reviews, 2020, 293, 25-37.	6.0	11
7	Age-Related Dynamics of Circulating Innate Lymphoid Cells in an African Population. Frontiers in Immunology, 2020, 11, 594107.	4.8	18
8	Natural Killer Cells Dampen the Pathogenic Features of Recall Responses to Influenza Infection. Frontiers in Immunology, 2020, 11, 135.	4.8	10
9	Differential IL-18 Dependence of Canonical and Adaptive NK Cells for Antibody Dependent Responses to P. falciparum. Frontiers in Immunology, 2020, 11, 533.	4.8	5
10	Ebola virus glycoprotein stimulates IL-18–dependent natural killer cell responses. Journal of Clinical Investigation, 2020, 130, 3936-3946.	8.2	12
11	Influenza Vaccination Primes Human Myeloid Cell Cytokine Secretion and NK Cell Function. Journal of Immunology, 2019, 203, 1609-1618.	0.8	19
12	Vaccinating for natural killer cell effector functions. Clinical and Translational Immunology, 2018, 7, e1010.	3.8	29
13	IL-15 Promotes Polyfunctional NK Cell Responses to Influenza by Boosting IL-12 Production. Journal of Immunology, 2018, 200, 2738-2747.	0.8	28
14	CMV and natural killer cells: shaping the response to vaccination. European Journal of Immunology, 2018, 48, 50-65.	2.9	65
15	Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Frontiers in Immunology, 2018, 9, 257.	4.8	53
16	Enhancement of cytokineâ€driven NK cell IFNâ€Î³ production after vaccination of HCMV infected Africans. European Journal of Immunology, 2017, 47, 1040-1050.	2.9	28
17	Calorie Restriction Attenuates Terminal Differentiation of Immune Cells. Frontiers in Immunology, 2017, 7, 667.	4.8	24
18	Induction of Cell Cycle and NK Cell Responses by Live-Attenuated Oral Vaccines against Typhoid Fever. Frontiers in Immunology, 2017, 8, 1276.	4.8	10

MARTIN R GOODIER

#	Article	IF	CITATIONS
19	Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation. Frontiers in Immunology, 2016, 7, 101.	4.8	69
20	Sustained Immune Complex-Mediated Reduction in CD16 Expression after Vaccination Regulates NK Cell Function. Frontiers in Immunology, 2016, 7, 384.	4.8	67
21	Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. Journal of Immunology, 2016, 197, 313-325.	0.8	76
22	Afri-Can Forum 2. BMC Infectious Diseases, 2016, 16, 315.	2.9	4
23	Differential frequency of NKG2C/KLRC2 deletion in distinct African populations and susceptibility to Trachoma: a new method for imputation of KLRC2 genotypes from SNP genotyping data. Human Genetics, 2016, 135, 939-951.	3.8	21
24	Impaired NK Cell Responses to Pertussis and H1N1 Influenza Vaccine Antigens in Human Cytomegalovirus-Infected Individuals. Journal of Immunology, 2015, 194, 4657-4667.	0.8	56
25	Differential activation of <scp>CD</scp> 57â€defined natural killer cell subsets during recall responses to vaccine antigens. Immunology, 2014, 142, 140-150.	4.4	54
26	Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood, 2014, 124, 2213-2222.	1.4	107
27	Functional Significance of CD57 Expression on Human NK Cells and Relevance to Disease. Frontiers in Immunology, 2013, 4, 422.	4.8	214
28	Short Communication: NKG2C ⁺ NK Cells Contribute to Increases in CD16 ⁺ CD56 ^{â^'} Cells in HIV Type 1 ⁺ Individuals with High Plasma Viral Load. AIDS Research and Human Retroviruses, 2013, 29, 84-88.	1.1	17
29	PD-1 Expression on Natural Killer Cells and CD8 ⁺ T Cells During Chronic HIV-1 Infection. Viral Immunology, 2012, 25, 329-332.	1.3	112
30	Increased proportion of CD16 ⁺ NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Alimentary Pharmacology and Therapeutics, 2011, 33, 115-126.	3.7	55
31	A rapid method for assessment of natural killer cell function after multiple receptor crosslinking. Journal of Immunological Methods, 2011, 366, 52-59.	1.4	20
32	Killing of Kaposi's sarcomaâ€essociated herpesvirusâ€infected fibroblasts during latent infection by activated natural killer cells. European Journal of Immunology, 2011, 41, 1958-1968.	2.9	18
33	NK Cells and immune activation in HIV-1 infection. Retrovirology, 2010, 7, .	2.0	0
34	Intestinal natural killer cells. , 2010, , 331-344.		1
35	Elevated plasma lipopolysaccharide is not sufficient to drive natural killer cell activation in HIV-1-infected individuals. Aids, 2009, 23, 29-34.	2.2	18
36	Human NK Cell Up-regulation of CD69, HLA-DR, Interferon Î ³ Secretion and Cytotoxic Activity by Plasmacytoid Dendritic Cells is Regulated through Overlapping but Different Pathways. Sensors, 2009, 9, 386-403.	3.8	21

MARTIN R GOODIER

#	Article	IF	CITATIONS
37	Innate natural killer cell phenotype and function during HIV-1 infection: potential avenues for modulation. HIV Therapy, 2009, 3, 161-170.	0.6	0
38	NKG2C + NK Cells Are Enriched in AIDS Patients with Advanced-Stage Kaposi's Sarcoma. Journal of Virology, 2007, 81, 430-433.	3.4	24
39	The Contribution of Cytomegalovirus to Changes in NK Cell Receptor Expression in HIVâ€1–Infected Individuals. Journal of Infectious Diseases, 2007, 195, 158-159.	4.0	47
40	Depletion of natural killer cells in the colonic lamina propria of viraemic HIV-1-infected individuals. Aids, 2007, 21, 2177-2182.	2.2	26
41	Identical twins discordant for type 1 diabetes show a different pattern ofin vitro CD56+ cell activation. Diabetes/Metabolism Research and Reviews, 2006, 22, 367-375.	4.0	6
42	Altered Monocyte Cyclooxygenase Response to Lipopolysaccharide in Type 1 Diabetes. Diabetes, 2006, 55, 3439-3445.	0.6	28
43	Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. Aids, 2005, 19, 1761-1769.	2.2	81
44	CD28 is not directly involved in the response of human CD3-CD56+ natural killer cells to lipopolysaccharide: a role for T cells. Immunology, 2004, 111, 384-390.	4.4	12
45	Loss of the CD56hi CD16â^' NK cell subset and NK cell interferon-Î ³ production during antiretroviral therapy for HIV-1: partial recovery by human growth hormone. Clinical and Experimental Immunology, 2003, 134, 470-476.	2.6	43
46	Low concentrations of lipopolysaccharide synergize with peptides to augment human Tâ€cell proliferation and can prevent the induction of nonâ€responsiveness by CTLA4â€lg. Immunology, 2001, 102, 15-23.	4.4	8
47	Lipopolysaccharide Stimulates the Proliferation of Human CD56+CD3â~'NK Cells: A Regulatory Role of Monocytes and IL-10. Journal of Immunology, 2000, 165, 139-147.	0.8	79
48	Evidence for CD4+ T cell responses common to Plasmodium falciparum and recall antigens. International Immunology, 1997, 9, 1857-1865.	4.0	15
49	Polyclonal T ell responses to Plasmodium falciparum gametocytes in malaria nonexposed donors. Parasite Immunology, 1997, 19, 419-425.	1.5	20
50	The response of γδT cells to Plasmodium falciparum is dependent on activated CD4 + T cells and the recognition of MHC class I molecules. Immunology, 1996, 89, 405-412.	4.4	39
51	Cytokine profiles for human Vγ9+ T cells stimulated by <i>Plasmodium falciparum</i> . Parasite Immunology, 1995, 17, 413-423.	1.5	71
52	The response of γδT cells in malaria infections: a hypothesis. Research in Immunology, 1994, 145, 429-436.	0.9	10
53	Î ³ δT cells in the peripheral blood of individuals from an area of holoendemic Plasmodium falciparum transmission. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1993, 87, 692-696.	1.8	37
54	Human peripheral blood Î ³ δT cells respond to antigens of Plasmodium falciparum. International Immunology, 1992, 4, 33-41.	4.0	90

#	Article	IF	CITATIONS
55	Is there a role for γδT cells in malaria?. Trends in Immunology, 1992, 13, 298-300.	7.5	54
56	Quantitative analysis of the response of human T cell receptor Vγ9+ cells toPlasmodium falciparum. European Journal of Immunology, 1992, 22, 2757-2760.	2.9	18
57	Post-transcriptional regulation of cytoskeletal actin and T lymphocyte receptor β chain mRNA by phorbol ester. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 124-127.	4.1	4
58	Comparable exposure to SARS-CoV-2 in young children and healthcare workers in Zambia. Wellcome Open Research, 0, 6, 97.	1.8	1