
Peter S Linsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6683144/publications.pdf Version: 2024-02-01

DETED S LINGLEY

#	Article	IF	CITATIONS
1	MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biology, 2015, 16, 278.	8.8	2,047
2	Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature, 1996, 381, 434-438.	27.8	1,430
3	An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. New England Journal of Medicine, 2019, 381, 603-613.	27.0	584
4	A phenotypically and functionally distinct human T _H 2 cell subpopulation is associated with allergic disorders. Science Translational Medicine, 2017, 9, .	12.4	291
5	Copy Number Loss of the Interferon Gene Cluster in Melanomas Is Linked to Reduced T Cell Infiltrate and Poor Patient Prognosis. PLoS ONE, 2014, 9, e109760.	2.5	192
6	Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes. Science Immunology, 2016, 1, .	11.9	169
7	Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy. Nature Communications, 2020, 11, 219.	12.8	167
8	The clinical utility of inhibiting CD28â€mediated costimulation. Immunological Reviews, 2009, 229, 307-321.	6.0	148
9	Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. Journal of Clinical Investigation, 2019, 130, 480-490.	8.2	99
10	Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight, 2018, 3, .	5.0	85
11	Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7Âyears from diagnosis. Diabetologia, 2019, 62, 655-664.	6.3	74
12	Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes. Cellular Immunology, 2017, 319, 3-9.	3.0	72
13	Single-Cell RNA Sequencing Reveals Expanded Clones of Islet Antigen-Reactive CD4+ T Cells in Peripheral Blood of Subjects with Type 1 Diabetes. Journal of Immunology, 2017, 199, 323-335.	0.8	62
14	Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. Journal of Immunology, 2017, 199, 107-118.	0.8	45
15	The human tissue-resident CCR5 ⁺ T cell compartment maintains protective and functional properties during inflammation. Science Translational Medicine, 2019, 11, .	12.4	41
16	Elevated T cell levels in peripheral blood predict poor clinical response following rituximab treatment in new-onset type 1 diabetes. Genes and Immunity, 2019, 20, 293-307.	4.1	41
17	Renal Cell Carcinoma (RCC) Tumors Display Large Expansion of Double Positive (DP) CD4+CD8+ T Cells With Expression of Exhaustion Markers. Frontiers in Immunology, 2018, 9, 2728.	4.8	39
18	B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. JCI Insight, 2019, 4, .	5.0	39

PETER S LINSLEY

#	Article	IF	CITATIONS
19	Cell type–specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. JCI Insight, 2019, 4, .	5.0	38
20	Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects. JCI Insight, 2021, 6, .	5.0	37
21	Pcsk9 Deletion Promotes Murine Nonalcoholic Steatohepatitis and Hepatic Carcinogenesis: Role of Cholesterol. Hepatology Communications, 2022, 6, 780-794.	4.3	28
22	IRF5 genetic risk variants drive myeloid-specific IRF5 hyperactivation and presymptomatic SLE. JCI Insight, 2020, 5, .	5.0	27
23	Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia, 2020, 63, 1576-1587.	6.3	26
24	Enforcing the checkpoints. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 213-218.	2.3	25
25	The Relationship of Immune Cell Signatures to Patient Survival Varies within and between Tumor Types. PLoS ONE, 2015, 10, e0138726.	2.5	24
26	Inflammatory Cytokines Induce Sustained CTLA-4 Cell Surface Expression on Human MAIT Cells. ImmunoHorizons, 2020, 4, 14-22.	1.8	24
27	Uncovering Pathways to Personalized Therapies in Type 1 Diabetes. Diabetes, 2021, 70, 831-841.	0.6	20
28	Deep immune phenotyping reveals similarities between aging, Down syndrome, and autoimmunity. Science Translational Medicine, 2022, 14, eabi4888.	12.4	20
29	A composite immune signature parallels disease progression across T1D subjects. JCI Insight, 2019, 4, .	5.0	15
30	Autoreactive T cell receptors with shared germline-like α chains in type 1 diabetes. JCI Insight, 2021, 6, .	5.0	14
31	Pillars article: long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996. 381: 434-438. 1996. Journal of Immunology, 2011, 186, 2693-7.	0.8	8
32	IL-6-Driven pSTAT1 Response Is Linked to T Cell Features Implicated in Early Immune Dysregulation. Frontiers in Immunology, 0, 13, .	4.8	0