Thomas P Fabrizio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6682974/publications.pdf

Version: 2024-02-01

430874 434195 1,911 30 18 31 citations h-index g-index papers 33 33 33 3544 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
2	Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants. New England Journal of Medicine, 2021, 385, 664-666.	27.0	297
3	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
4	Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature, 2020, 587, 466-471.	27.8	108
5	Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1636-1641.	7.1	105
6	Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck. Nature Communications, 2015, 6, 6553.	12.8	90
7	The C-Terminal Tail of TRIM56 Dictates Antiviral Restriction of Influenza A and B Viruses by Impeding Viral RNA Synthesis. Journal of Virology, 2016, 90, 4369-4382.	3.4	74
8	Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia. PLoS ONE, 2012, 7, e31359.	2.5	68
9	Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host and Microbe, 2022, 30, 83-96.e4.	11.0	64
10	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	14.3	52
11	Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3669-3674.	7.1	51
12	Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infection, Genetics and Evolution, 2016, 44, 530-540.	2.3	44
13	Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8593-8601.	7.1	43
14	Shifting Clade Distribution, Reassortment, and Emergence of New Subtypes of Highly Pathogenic Avian Influenza A(H5) Viruses Collected from Vietnamese Poultry from 2012 to 2015. Journal of Virology, 2017, 91, .	3.4	41
15	Pathogenicity and Transmissibility of North American Triple Reassortant Swine Influenza A Viruses in Ferrets. PLoS Pathogens, 2012, 8, e1002791.	4.7	36
16	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
17	Novel avian paramyxovirus (APMV-15) isolated from a migratory bird in South America. PLoS ONE, 2017, 12, e0177214.	2.5	22
18	The immune correlates of protection for an avian influenza H5N1 vaccine in the ferret model using oil-in-water adjuvants. Scientific Reports, 2017, 7, 44727.	3.3	19

#	Article	IF	CITATIONS
19	Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza and Other Respiratory Viruses, 2018, 12, 220-231.	3.4	17
20	Contemporary Seasonal Influenza A (H1N1) Virus Infection Primes for a More Robust Response To Split Inactivated Pandemic Influenza A (H1N1) Virus Vaccination in Ferrets. Vaccine Journal, 2010, 17, 1998-2006.	3.1	16
21	Putative amino acid determinants of the emergence of the 2009 influenza A (H1N1) virus in the human population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13522-13527.	7.1	12
22	Cross-reactive Antibody Response to mRNA SARS-CoV-2 Vaccine After Recent COVID-19-Specific Monoclonal Antibody Therapy. Open Forum Infectious Diseases, 2021, 8, ofab420.	0.9	12
23	Antibody Responses to SARS-CoV-2 Antigens in Humans and Animals. Vaccines, 2020, 8, 684.	4.4	11
24	Changes to the dynamic nature of hemagglutinin and the emergence of the 2009 pandemic H1N1 influenza virus. Scientific Reports, 2015, 5, 12828.	3.3	10
25	Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil. PLoS ONE, 2015, 10, e0145627.	2.5	9
26	Both influenza hemagglutinin and polymerase acidic genes are important for delayed pandemic 2009 H1N1 virus clearance in the ferret model. Virology, 2012, 432, 389-393.	2.4	6
27	New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model. Journal of General Virology, 2015, 96, 1603-1612.	2.9	6
28	Surveillance of Avian Influenza Virus in Aquatic Birds on the Brazilian Amazon Coast. EcoHealth, 2016, 13, 813-818.	2.0	5
29	Transmission experiments support clade-level differences in the transmission and pathogenicity of Cambodian influenza A/H5N1 viruses. Emerging Microbes and Infections, 2020, 9, 1702-1711.	6.5	5
30	Virologic Differences Do Not Fully Explain the Diversification of Swine Influenza Viruses in the United States. Journal of Virology, 2016, 90, 10074-10082.	3.4	3