Nico A J M Sommerdijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6681185/publications.pdf

Version: 2024-02-01

253 papers

20,290 citations

71 h-index

10986

134 g-index

280 all docs

280 docs citations

times ranked

280

20892 citing authors

#	Article	IF	CITATIONS
1	Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349, aaa6760.	12.6	1,467
2	The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature Materials, 2010, 9, 1004-1009.	27.5	960
3	Chiral Architectures from Macromolecular Building Blocks. Chemical Reviews, 2001, 101, 4039-4070.	47.7	857
4	The Initial Stages of Template-Controlled CaCO ₃ Formation Revealed by Cryo-TEM. Science, 2009, 323, 1455-1458.	12.6	831
5	The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nature Materials, 2010, 9, 1010-1014.	27.5	623
6	Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature Communications, 2013, 4, 1507.	12.8	602
7	Helical Superstructures from Charged Poly(styrene)-Poly(isocyanodipeptide) Block Copolymers. Science, 1998, 280, 1427-1430.	12.6	588
8	Nucleation and growth of magnetite from solution. Nature Materials, 2013, 12, 310-314.	27.5	583
9	Biomineralization as an Inspiration for Materials Chemistry. Angewandte Chemie - International Edition, 2012, 51, 6582-6596.	13.8	426
10	A virus-based single-enzyme nanoreactor. Nature Nanotechnology, 2007, 2, 635-639.	31.5	406
11	Biomimetic CaCO ₃ Mineralization using Designer Molecules and Interfaces. Chemical Reviews, 2008, 108, 4499-4550.	47.7	400
12	Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nature Materials, 2015, 14, 394-399.	27.5	353
13	beta -Helical Polymers from Isocyanopeptides. Science, 2001, 293, 676-680.	12.6	290
14	New micellar morphologies from amphiphilic block copolymers: disks, toroids and bicontinuous micelles. Polymer Chemistry, 2011, 2, 1018-1028.	3.9	269
15	Hierarchical Formation of Supramolecular Transient Networks in Water: A Modular Injectable Delivery System. Advanced Materials, 2012, 24, 2703-2709.	21.0	247
16	Glucose-oxidase Based Self-Destructing Polymeric Vesicles. Langmuir, 2004, 20, 3487-3491.	3.5	228
17	In vitro models of collagen biomineralization. Journal of Structural Biology, 2013, 183, 258-269.	2.8	215
18	Imaging of Selfâ€Assembled Structures: Interpretation of TEM and Cryoâ€₹EM Images. Angewandte Chemie - International Edition, 2010, 49, 7850-7858.	13.8	202

#	Article	IF	CITATIONS
19	Conducting Polymers with Confined Dimensions: Track-Etch Membranes for Amperometric Biosensor Applications. Advanced Materials, 2002, 14, 1779-1782.	21.0	189
20	Liquid–liquid phase separation during amphiphilic self-assembly. Nature Chemistry, 2019, 11, 320-328.	13.6	185
21	A classical view on nonclassical nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7882-E7890.	7.1	181
22	Poly(3,4-ethylenedioxythiophene)-Based Glucose Biosensors. Advanced Materials, 2001, 13, 1555.	21.0	178
23	The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure. Advanced Materials, 2003, 15, 1097-1100.	21.0	167
24	Highly Luminescent CdTe/CdSe Colloidal Heteronanocrystals with Temperature-Dependent Emission Color. Journal of the American Chemical Society, 2007, 129, 14880-14886.	13.7	167
25	Nucleation and Growth of Monodisperse Silica Nanoparticles. Nano Letters, 2014, 14, 1433-1438.	9.1	165
26	Hollow Silica Spheres with an Ordered Pore Structure and Their Application in Controlled Release Studies. Chemistry - A European Journal, 2006, 12, 1448-1456.	3.3	153
27	Investigating materials formation with liquid-phase and cryogenic TEM. Nature Reviews Materials, 2016, $\hat{1}$, .	48.7	153
28	Molecular nucleation mechanisms and control strategies for crystal polymorph selection. Nature, 2018, 556, 89-94.	27.8	150
29	Design and self-assembly of simple coat proteins for artificial viruses. Nature Nanotechnology, 2014, 9, 698-702.	31.5	146
30	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	11.1	146
31	A Reduced SNARE Model for Membrane Fusion. Angewandte Chemie - International Edition, 2009, 48, 2330-2333.	13.8	145
32	Giant Amphiphiles by Cofactor Reconstitution. Angewandte Chemie - International Edition, 2002, 41, 4239-4241.	13.8	141
33	Self-assembly of soft nanoparticles with tunable patchiness. Nature Nanotechnology, 2009, 4, 721-726.	31.5	129
34	Think Positive: Phase Separation Enables a Positively Charged Additive to Induce Dramatic Changes in Calcium Carbonate Morphology. Advanced Functional Materials, 2012, 22, 907-915.	14.9	128
35	Self-Assembled Structures from an Amphiphilic Multiblock Copolymer Containing Rigid Semiconductor Segments. Macromolecules, 2000, 33, 8289-8294.	4.8	122
36	Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications. Sensors and Actuators B: Chemical, 2005, 106, 289-295.	7.8	117

#	Article	IF	CITATIONS
37	Self-Assembled Hybrid Oligo(p-phenylenevinylene)–Gold Nanoparticle Tapes. Angewandte Chemie - International Edition, 2007, 46, 1825-1828.	13.8	117
38	In situ techniques in biomimetic mineralization studies of calcium carbonate. Chemical Society Reviews, 2010, 39, 397-409.	38.1	117
39	A Shape-Persistent Polymeric Crystallization Template for CaCO3. Journal of the American Chemical Society, 2002, 124, 9700-9701.	13.7	112
40	Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials & Distribution (2016), 8, 32211-32219.	8.0	111
41	Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Chemical Communications, 2000, , 1937-1938.	4.1	108
42	Induced Supramolecular Chirality in Nanostructured Materials:  Ionic Self-Assembly of Perylene-Chiral Surfactant Complexes. Chemistry of Materials, 2006, 18, 1839-1847.	6.7	108
43	The Development of Morphology and Structure in Hexagonal Vaterite. Journal of the American Chemical Society, 2010, 132, 11560-11565.	13.7	107
44	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	28.9	101
45	Oligo(<i>p</i> -phenylenevinylene)â^'Peptide Conjugates: Synthesis and Self-Assembly in Solution and at the Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2008, 130, 14576-14583.	13.7	100
46	Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nature Communications, 2018, 9, 2582.	12.8	100
47	Cryo Electron Tomography Reveals Confined Complex Morphologies of Tripeptideâ€Containing Amphiphilic Doubleâ€Comb Diblock Copolymers. Angewandte Chemie - International Edition, 2008, 47, 8859-8862.	13.8	99
48	Bioinspired synthesis of magnetite nanoparticles. Chemical Society Reviews, 2016, 45, 5085-5106.	38.1	97
49	Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials, 2006, 27, 691-701.	11.4	96
50	Aggregation Behavior of Giant Amphiphiles Prepared by Cofactor Reconstitution. Chemistry - A European Journal, 2006, 12, 6071-6080.	3. 3	94
51	Interconnective Hostâ^'Guest Complexation of \hat{I}^2 -Cyclodextrinâ^'Calix[4]arene Couples. Journal of the American Chemical Society, 1999, 121, 28-33.	13.7	93
52	Directed assembly of optoelectronically active alkyl–π-conjugated molecules by adding n-alkanes or π-conjugated species. Nature Chemistry, 2014, 6, 690-696.	13.6	92
53	Temperature-Responsive Nanospheres with Bicontinuous Internal Structures from a Semicrystalline Amphiphilic Block Copolymer. Journal of the American Chemical Society, 2010, 132, 10256-10259.	13.7	91
54	Highly Ordered Structures of Amphiphilic Polythiophenes in Aqueous Media. Macromolecules, 2002, 35, 1054-1059.	4.8	90

#	Article	IF	CITATIONS
55	Control over Calcium Carbonate Phase Formation by Dendrimer/Surfactant Templates. Chemistry - A European Journal, 2002, 8, 2561.	3.3	90
56	A Quasi-Time-Resolved CryoTEM Study of the Nucleation of CaCO ₃ under Langmuir Monolayers. Journal of the American Chemical Society, 2008, 130, 4034-4040.	13.7	90
57	Intermolecular channels direct crystal orientation in mineralized collagen. Nature Communications, 2020, 11, 5068.	12.8	90
58	Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10441-10446.	7.1	88
59	Silica-based hybrid materials as biocompatible coatings for glucose sensors. Sensors and Actuators B: Chemical, 2001, 81, 68-75.	7.8	87
60	Insights into Templated Supramolecular Polymerization: Binding of Naphthalene Derivatives to ssDNA Templates of Different Lengths. Journal of the American Chemical Society, 2009, 131, 1222-1231.	13.7	86
61	Aligned Growth of Calcite Crystals on a Self-Assembled Monolayer. Advanced Materials, 2002, 14, 492-495.	21.0	85
62	Noncovalent Triblock Copolymers Based on a Coiled-Coil Peptide Motif. Journal of the American Chemical Society, 2008, 130, 9386-9393.	13.7	85
63	Influence of inflammatory cells and serum on the performance of implantable glucose sensors. Journal of Biomedical Materials Research Part B, 2001, 54, 69-75.	3.1	84
64	Protein-Polymer Hybrid Amphiphiles. Angewandte Chemie - International Edition, 2001, 40, 4732-4734.	13.8	82
65	CryoTEM as an Advanced Analytical Tool for Materials Chemists. Accounts of Chemical Research, 2017, 50, 1495-1501.	15.6	82
66	Morphological control and molecular recognition by bis-urea hydrogen bonding in micelles of amphiphilic tri-block copolymers. Chemical Communications, 2005, , 4967.	4.1	81
67	Osteoporotic Bone Recovery by a Highly Boneâ€Inductive Calcium Phosphate Polymerâ€Induced Liquidâ€Precursor. Advanced Science, 2019, 6, 1900683.	11.2	80
68	Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. Journal of Controlled Release, 2006, 113, 63-72.	9.9	78
69	Crystallization by particle attachment is a colloidal assembly process. Nature Materials, 2020, 19, 391-396.	27.5	78
70	Bioinspired synthesis of mesoporous silicas. Current Opinion in Solid State and Materials Science, 2004, 8, 111-120.	11.5	76
71	Stereodependent Fusion and Fission of Vesicles:Â Calcium Binding of Synthetic Gemini Phospholipids Containing Two Phosphate Groups. Journal of the American Chemical Society, 1997, 119, 4338-4344.	13.7	75
72	Liquidâ€Phase Electron Microscopy for Soft Matter Science and Biology. Advanced Materials, 2020, 32, e2001582.	21.0	75

#	Article	IF	CITATIONS
73	Three-Dimensional Structure of P3HT Assemblies in Organic Solvents Revealed by Cryo-TEM. Nano Letters, 2014, 14, 2033-2038.	9.1	74
74	The role of the amorphous phase on the biomimetic mineralization of collagen. Faraday Discussions, 2012, 159, 357.	3.2	73
75	Oriented Crystallization of Calcium Carbonate under Self-Organized Monolayers of Amide-Containing Phospholipids. Langmuir, 2001, 17, 3623-3628.	3.5	72
76	Dendrimer-Based Hydroxyapatite Composites with Remarkable Materials Properties. Advanced Materials, 2003, 15, 313-316.	21.0	67
77	Self-Organizing \hat{I}^2 -Sheet Lipopeptide Monolayers as Template for the Mineralization of CaCO3. Angewandte Chemie - International Edition, 2006, 45, 739-744.	13.8	67
78	Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Advanced Materials, 2022, 34, e2201095.	21.0	66
79	Template Adaptability Is Key in the Oriented Crystallization of CaCO3. Journal of the American Chemical Society, 2007, 129, 14058-14067.	13.7	65
80	High-Magnesian Calcite Mesocrystals: A Coordination Chemistry Approach. Journal of the American Chemical Society, 2012, 134, 1367-1373.	13.7	65
81	An Organoid for Woven Bone. Advanced Functional Materials, 2021, 31, 2010524.	14.9	65
82	The first example of a poly(ethylene oxide)–poly(methylphenylsilane) amphiphilic block copolymer: vesicle formation in water. Chemical Communications, 1998, , 1445-1446.	4.1	64
83	Molecular Recognition in Poly(l̂µ-caprolactone)-Based Thermoplastic Elastomers. Biomacromolecules, 2006, 7, 3385-3395.	5.4	64
84	A Bioinspired Coprecipitation Method for the Controlled Synthesis of Magnetite Nanoparticles. Crystal Growth and Design, 2014, 14, 5561-5568.	3.0	61
85	Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biology, 2017, 15, 65.	3.8	61
86	Poly(3,4-ethylenedioxythiophene)-based copolymers for biosensor applications. Journal of Polymer Science Part A, 2002, 40, 738-747.	2.3	58
87	Calcium carbonate thin films as biomaterial coatings using DNA as crystallization inhibitor. CrystEngComm, 2007, 9, 1209.	2.6	58
88	Uniting Polypeptides with Sequence-Designed Peptides: Synthesis and Assembly of Poly(\hat{l}^3 -benzyl) Tj ETQq0 0 0 2370-2377.	rgBT /Ovei 13.7	rlock 10 Tf 50 57
89	Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres. Angewandte Chemie - International Edition, 2015, 54, 2457-2461.	13.8	56
90	Synthesis and characterization of polyisocyanides derived from alanine and glycine dipeptides. Journal of Polymer Science Part A, 2001, 39, 4255-4264.	2.3	54

#	Article	IF	Citations
91	Silver Nanoarrays Templated by Block Copolymers of Carbosilane Dendrimers and Polyisocyanopeptides. Advanced Materials, 2002, 14, 489-492.	21.0	54
92	Shaping Amorphous Calcium Carbonate Films into 2D Model Substrates for Bone Cell Culture. Angewandte Chemie - International Edition, 2006, 45, 1762-1767.	13.8	54
93	Cryo-electron tomography: 3-dimensional imaging of soft matter. Soft Matter, 2011, 7, 17-24.	2.7	54
94	Precipitation of Amorphous Calcium Oxalate in Aqueous Solution. Chemistry of Materials, 2015, 27, 3999-4007.	6.7	53
95	Controlled Supramolecular Oligomerization of <i>C₃</i> ê€Symmetrical Molecules in Water: The Impact of Hydrophobic Shielding. Chemistry - A European Journal, 2011, 17, 5193-5203.	3.3	51
96	Osmotically Shrunken LIPOCEST Agents: An Innovative Class of Magnetic Resonance Imaging Contrast Media Based on Chemical Exchange Saturation Transfer. Chemistry - A European Journal, 2009, 15, 1440-1448.	3.3	50
97	Gold Nanorods with Subâ€Nanometer Separation using Cucurbit[⟨i⟩n⟨/i⟩]uril for SERS Applications. Small, 2014, 10, 4298-4303.	10.0	50
98	From bone regeneration to three-dimensional inÂvitro models: tissue engineering of organized bone extracellular matrix. Current Opinion in Biomedical Engineering, 2019, 10, 107-115.	3.4	50
99	Stepwise Noncovalent Synthesis Leading to Dendrimer-Based Assemblies in Water. Journal of the American Chemical Society, 2007, 129, 15631-15638.	13.7	49
100	Tunable Stimuliâ€Responsive Colorâ€Change Properties of Layered Organic Composites. Advanced Functional Materials, 2018, 28, 1804906.	14.9	48
101	Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discussions, 2012, 159, 327.	3.2	47
102	One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS Nano, 2020, 14, 5874-5886.	14.6	47
103	Stabilization of amorphous calcium carbonate by controlling its particle size. Nanoscale, 2010, 2, 2436.	5.6	46
104	Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. Journal of Materials Chemistry, 2005, 15, 4006.	6.7	45
105	Conformational analysis of dipeptide-derived polyisocyanides. Journal of Polymer Science Part A, 2003, 41, 1725-1736.	2.3	44
106	Controlling the Distribution of Supported Nanoparticles by Aqueous Synthesis. Chemistry of Materials, 2013, 25, 890-896.	6.7	44
107	The formation of gigantic hollow silica spheres from an EO76–PO29–EO76/butanol/ethanol/H2O quaternary system. Journal of Materials Chemistry, 2005, 15, 256-259.	6.7	42
108	Disk micelles from amphiphilic Janus gold nanoparticles. Chemical Communications, 2008, , 697-699.	4.1	42

#	Article	IF	Citations
109	Morphology, binding behavior and MRâ€properties of paramagnetic collagenâ€binding liposomes. Contrast Media and Molecular Imaging, 2009, 4, 81-88.	0.8	42
110	Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: the role of solvent–solvent correlations. Soft Matter, 2011, 7, 6622.	2.7	41
111	Simulation of Calcium Phosphate Prenucleation Clusters in Aqueous Solution: Association beyond lon Pairing. Crystal Growth and Design, 2019, 19, 6422-6430.	3.0	41
112	Spatial and temporal resolution in cryo-electron microscopyâ€"A scope for nano-chemistry. Current Opinion in Colloid and Interface Science, 2005, 10, 245-249.	7.4	40
113	Lessons from Natureâ€"Biomimetic Approaches to Minerals with Complex Structures. MRS Bulletin, 2010, 35, 116-121.	3.5	40
114	Mesoporous Silica Nanoparticle-Coated Microneedle Arrays for Intradermal Antigen Delivery. Pharmaceutical Research, 2017, 34, 1693-1706.	3.5	40
115	The detection of phenols in water using a surface plasmon resonance system with specific receptors. Sensors and Actuators B: Chemical, 1998, 51, 305-310.	7.8	38
116	Cationic Gemini Surfactants Based on Tartaric Acid: Synthesis, Aggregation, Monolayer Behaviour, and Interaction with DNA. European Journal of Organic Chemistry, 2002, 2002, 1397-1406.	2.4	38
117	Controlled Silica Synthesis Inspired by Diatom Silicon Biomineralization. Journal of Nanoscience and Nanotechnology, 2005, 5, 68-78.	0.9	38
118	Sol-gel entrapped materials for optical sensing of solvents and metal ions. Sensors and Actuators B: Chemical, 1997, 38, 48-52.	7.8	37
119	Multilayered DNA coatings: In vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomaterialia, 2007, 3, 587-596.	8.3	36
120	Peptide nanotube formation: a crystal growth process. Soft Matter, 2012, 8, 7463.	2.7	36
121	Bicontinuous Nanospheres from Simple Amorphous Amphiphilic Diblock Copolymers. Macromolecules, 2013, 46, 9845-9848.	4.8	36
122	ABA triblock copolymers: from controlled synthesis to controlled function. Journal of Materials Chemistry, 2003, 13, 2771-2778.	6.7	35
123	The Patterning and Alignment of Muscle Cells Using the Selective Adhesion of Poly(oligoethylene) Tj ETQq1 1 0.7 2324-2329.	784314 rg 21.0	BT /Overlock 35
124	Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids. Journal of Materials Chemistry, 2011, 21, 9219.	6.7	35
125	Assessing internal structure of polymer assemblies from 2D to 3D CryoTEM: Bicontinuous micelles. Current Opinion in Colloid and Interface Science, 2012, 17, 343-349.	7.4	35
126	Aziridines as Precursors for Chiral Amide-Containing Surfactants. Journal of Organic Chemistry, 1997, 62, 4955-4960.	3.2	33

#	Article	IF	CITATIONS
127	Two-Dimensional Ordered \hat{l}^2 -Sheet Lipopeptide Monolayers. Journal of the American Chemical Society, 2006, 128, 13959-13966.	13.7	33
128	Proteins as supramolecular hosts for C $<$ sub $>60sub>: a true solution of C<sub>60sub> in water. Nanoscale, 2018, 10, 9908-9916.$	5.6	33
129	Bioinspired Magnetite Crystallization Directed by Random Copolypeptides. Advanced Functional Materials, 2015, 25, 711-719.	14.9	32
130	Hollow Block Copolymer Nanoparticles through a Spontaneous One-step Structural Reorganization. ACS Nano, 2013, 7, 1120-1128.	14.6	31
131	Writing Silica Structures in Liquid with Scanning Transmission Electron Microscopy. Small, 2015, 11, 585-590.	10.0	31
132	The Bis-urea Motif as a Tool To Functionalize Self-Assembled Nanoribbons. Journal of the American Chemical Society, 2005, 127, 16768-16769.	13.7	30
133	Supramolecular Double Helices from Small C ₃ -Symmetrical Molecules Aggregated in Water. Journal of the American Chemical Society, 2020, 142, 17644-17652.	13.7	30
134	Kinetics of avidinâ€induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magnetic Resonance in Medicine, 2008, 60, 1444-1456.	3.0	29
135	Semi-crystalline block copolymer bicontinuous nanospheres for thermoresponsive controlled release. RSC Advances, 2014, 4, 26354-26358.	3.6	29
136	Structural adaptability in an organic template for CaCO3 mineralization. CrystEngComm, 2007, 9, 1192.	2.6	28
137	Well-Defined, Multifunctional Nanostructures of a Paramagnetic Lipid and a Lipopeptide for Macrophage Imaging. Journal of the American Chemical Society, 2009, 131, 406-407.	13.7	28
138	Control of magnetite nanocrystal morphology in magnetotactic bacteria by regulation of mms7 gene expression. Scientific Reports, 2016, 6, 29785.	3.3	28
139	Expression of Supramolecular Chirality in Aggregates of Chiral Amide-Containing Surfactants. Chemistry - A European Journal, 1998, 4, 127-136.	3.3	27
140	A printable glucose sensor based on a poly(pyrrole)-latex hybrid material. Sensors and Actuators B: Chemical, 2001, 80, 229-233.	7.8	26
141	Cyto- and histocompatibility of multilayered DNA-coatings on titanium. Journal of Biomedical Materials Research - Part A, 2006, 77A, 202-211.	4.0	26
142	Random Poly(Amino Acid)s Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3. Polymers, 2012, 4, 1195-1210.	4.5	26
143	Graphene oxide single sheets as substrates for high resolution cryoTEM. Soft Matter, 2015, 11, 1265-1270.	2.7	26
144	Native Chemical Ligation for Cross-Linking of Flower-Like Micelles. Biomacromolecules, 2018, 19, 3766-3775.	5.4	26

#	Article	IF	CITATIONS
145	Nucleation of protein mesocrystals via oriented attachment. Nature Communications, 2021, 12, 3902.	12.8	25
146	Copper(II) Complexes of a Dicephalic Imidazole Surfactant. Tunable Organization of Metalloaggregates. Langmuir, 1999, 15, 7008-7013.	3.5	24
147	Fabrication of Organicâ^'Inorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer. Langmuir, 2002, 18, 2571-2576.	3.5	24
148	The binding of CNA35 contrast agents to collagen fibrils. Chemical Communications, 2011, 47, 1503-1505.	4.1	24
149	A roadmap for poly(ethylene oxide)â€ <i>block</i> â€polyâ€îµâ€caprolactone selfâ€assembly in water: Prediction, synthesis, and characterization. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 330-339.	2.1	24
150	Graphene Liquid Cells Assembled through Loopâ€Assisted Transfer Method and Located with Correlated Lightâ€Electron Microscopy. Advanced Functional Materials, 2020, 30, 1904468.	14.9	24
151	Determination of the helical sense in alanine based polyisocyanides. Macromolecular Chemistry and Physics, 2002, 203, 1625-1630.	2.2	23
152	The development of a glove-box/Vitrobot combination: Air–water interface events visualized by cryo-TEM. Ultramicroscopy, 2008, 108, 1478-1483.	1.9	23
153	Visualizing order in dispersions and solid state morphology with Cryo-TEM and electron tomography: P3HT : PCBM organic solar cells. Journal of Materials Chemistry A, 2015, 3, 5031-5040.	10.3	23
154	Bioinspired magnetite synthesis via solid precursor phases. Chemical Science, 2016, 7, 5624-5634.	7.4	23
155	Supramolecular expression of chirality in assemblies of gemini surfactants. Chemical Communications, 1997, , 1423-1424.	4.1	22
156	Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. Journal of Polymer Science Part A, 2001, 39, 468-474.	2.3	22
157	Giant Amphiphiles by Cofactor Reconstitution. Angewandte Chemie, 2002, 114, 4413-4415.	2.0	22
158	Crystal Design and Crystal Engineering. Angewandte Chemie - International Edition, 2003, 42, 3572-3574.	13.8	22
159	In Vitro and In Vivo Effects of Deoxyribonucleic Acid–Based Coatings Funtionalized with Vascular Endothelial Growth Factor. Tissue Engineering, 2007, 13, 711-720.	4.6	22
160	Effect of pH on Complex Coacervate Core Micelles from Fe(III)-Based Coordination Polymer. Langmuir, 2011, 27, 14776-14782.	3.5	22
161	Stable ferrofluids of magnetite nanoparticles in hydrophobic ionic liquids. Nanotechnology, 2015, 26, 285602.	2.6	22
162	Understanding the Formation Mechanism of Magnetic Mesocrystals with (Cryo-)Electron Microscopy. Chemistry of Materials, 2019, 31, 7320-7328.	6.7	22

#	Article	IF	CITATIONS
163	Silane-based hybrids for biomedical applications. Journal of Adhesion Science and Technology, 2002, 16, 143-155.	2.6	21
164	Insights in the Organization of DNAâ^'Surfactant Monolayers Using Cryo-Electron Tomography. Journal of the American Chemical Society, 2007, 129, 11894-11895.	13.7	21
165	Crystals competing for space. Nature Materials, 2014, 13, 1078-1079.	27.5	21
166	Enzymatic pH control for biomimetic deposition of calcium phosphate coatings. Acta Biomaterialia, 2014, 10, 931-939.	8.3	21
167	Partial Oxidation as a Rational Approach to Kinetic Control in Bioinspired Magnetite Synthesis. Chemistry - A European Journal, 2015, 21, 6150-6156.	3.3	21
168	Assembly and activation of supported cobalt nanocrystal catalysts for the Fischer–Tropsch synthesis. Chemical Communications, 2018, 54, 2530-2533.	4.1	21
169	Silicon-based surface plasmon resonance chemical sensors. Sensors and Actuators B: Chemical, 1997, 38, 53-57.	7.8	20
170	A Triptyceneâ€Based Approach to Solubilising Carbon Nanotubes and C ₆₀ . Chemistry - A European Journal, 2012, 18, 8716-8723.	3.3	20
171	Bioinspired magnetite formation from a disordered ferrihydrite-derived precursor. Faraday Discussions, 2015, 179, 215-225.	3.2	19
172	The evolution of bicontinuous polymeric nanospheres in aqueous solution. Soft Matter, 2016, 12, 4113-4122.	2.7	19
173	Combinatorial Evolution of Biomimetic Magnetite Nanoparticles. Advanced Functional Materials, 2017, 27, 1604863.	14.9	19
174	Cryo-TEM and electron tomography reveal leaching-induced pore formation in ZSM-5 zeolite. Journal of Materials Chemistry A, 2019, 7, 1442-1446.	10.3	19
175	Spontaneous organization of supracolloids into three-dimensional structured materials. Nature Materials, 2021, 20, 541-547.	27.5	19
176	Unexpected complexation behaviour of a sol–gel immobilised dye: the development of an optical copper(II) sensor. Journal of Materials Chemistry, 1998, 8, 565-567.	6.7	18
177	Fluorescein functionalized random amino acid copolymers in the biomimetic synthesis of CaCO3. Soft Matter, 2011, 7, 9685.	2.7	18
178	Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation. Journal of Magnetism and Magnetic Materials, 2016, 416, 366-372.	2.3	18
179	Aragonite formation in confinements: A step toward understanding polymorph control. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8469-8471.	7.1	18
180	Photocatalytic activity of exfoliated graphite–TiO ₂ nanoparticle composites. Nanoscale, 2019, 11, 19301-19314.	5.6	18

#	Article	IF	CITATIONS
181	Dicephalic surfactants. Chemical Communications, 1998, , 743-744.	4.1	17
182	Surface-Induced Selective Delamination of Amphiphilic ABA Block Copolymer Thin Films. Macromolecules, 2004, 37, 3431-3437.	4.8	17
183	Deterioration in effective thermal conductivity of aqueous magnetic nanofluids. Journal of Applied Physics, 2014, 116, .	2.5	17
184	Synthesis, characterization and aggregation behavior of block copolymers containing a polyisocyanopeptide segment. Polymer, 2004, 45, 7417-7430.	3.8	16
185	Kinetic switching between two modes of bisurea surfactant self-assembly. Chemical Communications, 2010, 46, 6063.	4.1	16
186	Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. Soft Matter, 2014, 10, 9746-9751.	2.7	16
187	Early Transition Metal Doped Tungstite as an Effective Catalyst for Glucose Upgrading to 5-Hydroxymethylfurfural. Catalysis Letters, 2018, 148, 3093-3101.	2.6	16
188	Macrophage behavior on multilayered DNA-coatingsin vitro. Journal of Biomedical Materials Research - Part A, 2007, 80A, 612-620.	4.0	15
189	Cryogenic electron tomography reveals the template effect of chitosan in biomimetic silicification. Chemical Communications, 2010, 46, 1703.	4.1	14
190	Significance of the Amide Functionality on DOPA-Based Monolayers on Gold. Langmuir, 2012, 28, 16900-16908.	3.5	14
191	Nucleation Pathways in Electrolyte Solutions. , 2017, , 1-24.		14
192	The Self-Assembly of Amphiphilic Oligothiophenes: Hydrogen Bonding and Poly(glutamate) Complexation. Bulletin of the Chemical Society of Japan, 2007, 80, 1703-1715.	3.2	13
193	Biological responses to multilayered DNA-coatings. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 231-238.	3.4	13
194	Self-Assembly of Chiral Supramolecular Ureido-Pyrimidinone-Based Poly(ethylene glycol) Polymers via Multiple Pathways. Macromolecules, 2014, 47, 3823-3828.	4.8	13
195	Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres. Angewandte Chemie, 2015, 127, 2487-2491.	2.0	13
196	Growth Kinetics of Cobalt Carbonate Nanoparticles Revealed by Liquid-Phase Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 25448-25455.	3.1	13
197	Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration. Nano Letters, 2019, 19, 1136-1142.	9.1	13
198	The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: a stabiliser for the synthesis and dispersion of magnetite nanoparticles. Polymer Chemistry, 2014, 5, 524-534.	3.9	12

#	Article	IF	CITATIONS
199	A Mesocrystalâ€Like Morphology Formed by Classical Polymerâ€Mediated Crystal Growth. Advanced Functional Materials, 2017, 27, 1701658.	14.9	12
200	Tricyclo[5.2.1.02,6] decadienone epoxides: rigid, highly congested $\hat{l}\pm,\hat{l}^2$ -epoxycyclopentanones with distinctive chemical behavior Tetrahedron Letters, 1991, 32, 3127-3130.	1.4	11
201	Molecular Recognition Controls the Organization of Mixed Self-Organized Bis-Urea-Based Mineralization Templates for CaCO ₃ . Langmuir, 2007, 23, 12655-12662.	3.5	11
202	A Biomimetic Model for Mineralization of Type-I Collagen Fibrils. Methods in Molecular Biology, 2019, 1944, 39-54.	0.9	11
203	Peptide Amphiphile Nanoparticles Enhance the Immune Response Against a CpGâ€Adjuvanted Influenza Antigen. Advanced Healthcare Materials, 2014, 3, 343-348.	7.6	10
204	Disordered Filaments Mediate the Fibrillogenesis of Type I Collagen in Solution. Biomacromolecules, 2020, 21, 3631-3643.	5.4	10
205	Boomerang shaped aggregates from a histidine surfactant. Chemical Communications, 1997, , 455-456.	4.1	9
206	Tuning Intermolecular Interactions in a Rodlike Polymer Assembled at Surfaces and in Solution. Langmuir, 2004, 20, 8955-8957.	3.5	9
207	Divalent ligand for intramolecular complex formation to streptavidin. Organic and Biomolecular Chemistry, 2005, 3, 2393.	2.8	9
208	Library of Random Copolypeptides by Solid Phase Synthesis. Biomacromolecules, 2014, 15, 3687-3695.	5.4	9
209	Controlling the melting transition of semi-crystalline self-assembled block copolymer aggregates: controlling release rates of ibuprofen. Polymer Chemistry, 2017, 8, 5303-5316.	3.9	9
210	Transmission Electron Microscopy for Chemists. Accounts of Chemical Research, 2017, 50, 1795-1796.	15.6	9
211	Nanohybrid Materials with Tunable Birefringence via Cation Exchange in Polymer Films. Advanced Functional Materials, 2020, 30, 1907456.	14.9	9
212	Autocatalytic ring opening of N-acylaziridines. Complete control over regioselectivity by orientation at interfaces. Chemical Communications, 2001, , 269-270.	4.1	8
213	Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chemical Science, 2019, 10, 9001-9008.	7.4	8
214	Tuning the supramolecular expression of chirality: phospholipid analogues containing amide linkages. Journal of the Chemical Society Chemical Communications, 1994, , 1941.	2.0	7
215	Morphology of protein polymer hybrid films studied by atomic force microscopy and scanning confocal fluorescence microscopy. Thin Solid Films, 2003, 443, 124-135.	1.8	7
216	Electron Tomography Shows Molecular Anchoring Within a Layer-by-Layer Film. Journal of the American Chemical Society, 2008, 130, 12608-12609.	13.7	7

#	Article	IF	CITATIONS
217	Twoâ€Dimensional Hybrid Materials: Transferring Technology from Biology to Society. European Journal of Inorganic Chemistry, 2015, 2015, 1089-1095.	2.0	7
218	Time and space resolved methods: general discussion. Faraday Discussions, 2015, 179, 247-267.	3.2	7
219	HPM live $\hat{l}\frac{1}{4}$ for a full CLEM workflow. Methods in Cell Biology, 2021, 162, 115-149.	1.1	7
220	<i>In vivo</i> bioactivity of DNAâ€based coatings: An experimental study in rats. Journal of Biomedical Materials Research - Part A, 2010, 92A, 931-941.	4.0	6
221	Biomimetic Mineralization of Calcium Phosphate on a Functionalized Porous Silicon Carbide Biomaterial. ChemPlusChem, 2012, 77, 694-699.	2.8	6
222	Suspended crystalline films of protein hydrophobin I (HFBI). Journal of Colloid and Interface Science, 2015, 447, 107-112.	9.4	6
223	Smectic liquid crystal polymers as a template for ultrathin CaCO ₃ nanolayers. RSC Advances, 2016, 6, 13953-13956.	3.6	6
224	Design and construction of supramolecular and macromolecular architectures by tandem interactions. Macromolecular Symposia, 1997, 117, 291-304.	0.7	5
225	Highly defined pore size distribution in sol–gel silicate glasses induced by incorporation of an oligomeric siloxane. Chemical Communications, 1997, , 159-160.	4.1	5
226	Matrix Effects on Selective Chemical Sensing by Sol-Gel Entrapped Complexing Agents. , 1998, 13, 565-568.		5
227	Visualizing Biological Tissues: A Multiscale Workflow from Live Imaging to 3D Cryo-CLEM. Microscopy and Microanalysis, 2021, 27, 11-12.	0.4	5
228	DNA-Coatings: Bioactive Properties and Effects on Osteoblast-Like Cells. Key Engineering Materials, 2008, 361-363, 605-608.	0.4	4
229	Crystallization via Oriented Attachment of Nanoclusters with Short-Range Order in Solution. Journal of Physical Chemistry C, 2021, 125, 1143-1149.	3.1	4
230	Assemblies of aziridinemethanols. Journal of Materials Chemistry, 2001, 11, 269-277.	6.7	3
231	Hybrid Materials Engineering in Biology, Chemistry, and Physics. European Journal of Inorganic Chemistry, 2015, 2015, 1086-1088.	2.0	3
232	Synthesis and crystal structure of (+)-(2R,3R)-N, N′-bis-trityl-2,3-bis-aziridine. Journal of Chemical Crystallography, 1999, 29, 179-183.	1.1	2
233	Studying Polymer Self-Assembly by Combined Cryogenic and Liquid Phase Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 14-15.	0.4	2
234	Controlled Silica Synthesis Inspired by Diatom Silicon Biomineralization. Journal of Nanoscience and Nanotechnology, 2005, 5, 68-78.	0.9	2

#	Article	IF	CITATIONS
235	Crystal and molecular structure of ethyl-endo-5-acetoxy-exo-3,4-epoxy-4-endo-tricyclo [5.2.1.02,6] deca-8-ene-2-carboxylate, C15H18O5. Journal of Crystallographic and Spectroscopic Research, 1991, 21, 217-221.	0.2	1
236	The Three-dimensional Constitution of Micelle Forming Surfactants as Studied by Cryo Electron Microscopy and Tomography. Microscopy and Microanalysis, 2006, 12, 1544-1545.	0.4	1
237	Cover Picture: Self-Organizing \hat{I}^2 -Sheet Lipopeptide Monolayers as Template for the Mineralization of CaCO3 (Angew. Chem. Int. Ed. 5/2006). Angewandte Chemie - International Edition, 2006, 45, 677-677.	13.8	1
238	Controlling the Size, Shape and Stability of Supramolecular Polymers in Water. Journal of Visualized Experiments, 2012, , e3975.	0.3	1
239	Time and Space resolved Methods: general discussion. Faraday Discussions, 2015, 177, 263-292.	3.2	1
240	Liquid Phase Electron Microscopy of Soft Matter. Microscopy and Microanalysis, 2018, 24, 248-249.	0.4	1
241	Formation of Hierarchical Hybrid Silica-Polymer Using Quantitative Cryo- Electron Tomography. Microscopy and Microanalysis, 2019, 25, 59-60.	0.4	1
242	<i>In-Situ</i> Liquid Phase Electron Microscopy of Beam-Sensitive Materials. Microscopy and Microanalysis, 2019, 25, 63-64.	0.4	1
243	Poly(3,4-ethylenedioxythiophene)-Based Glucose Biosensors., 2001, 13, 1555.		1
244	Silver Nanoarrays Templated by Block Copolymers of Carbosilane Dendrimers and Polyisocyanopeptides. Advanced Materials, 2002, 14, 489.	21.0	1
245	From Molecular to Supramolecular Chirality. , 1995, , 3-11.		1
246	Crystal and molecular structure of 3-carboethoxy-E-pent-2-en-4-ynal(2,4-dinitrophenyl)hydrazone, C14H12N4O6. Journal of Crystallographic and Spectroscopic Research, 1993, 23, 69-72.	0.2	0
247	A Surface Plasmon Resonance Study of the Binding of Antibody LDS47 to Self-assembled Monolayers of Cysteine Containing Peptides. Journal of Chemical Research Synopses, 1999, , 42-43.	0.3	0
248	Biomimetic synthesis of calcium carbonate bilayers interfaced by a diblock copolymer template. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 739-743.	0.8	0
249	Polymer Inclusions in Biomimetic Calcite. Microscopy and Microanalysis, 2012, 18, 574-575.	0.4	0
250	Towards Understanding the Mechanisms behind Templated Growth of 2D Magnetite Platelets via Bio-Inspired Approaches. Microscopy and Microanalysis, 2019, 25, 61-62.	0.4	0
251	Challenges in Observing the Formation of Colloidal, Self-Assembled Monolayers with In Situ Electron Microscopy in Liquid. Microscopy and Microanalysis, 2019, 25, 55-56.	0.4	0
252	Transient phases and prenucleation clusters in biomimetic calcium phosphate mineralization. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C116-C116.	0.3	0

#	Article	lF	CITATIONS
253	Expression of Supramolecular Chirality in Aggregates of Chiral Amide-Containing Surfactants. Chemistry - A European Journal, 1998, 4, 127-136.	3.3	O