
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6680850/publications.pdf

Version: 2024-02-01



ΔΝΠΡΕΛΟ ΚΑΊ/ ΡΤΕΝ

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.                                                                                                                     | 27.8 | 1,114     |
| 2  | Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene. Science, 2009, 325, 730-733.                                                                                                                                      | 12.6 | 837       |
| 3  | Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.                                                                                                                          | 27.8 | 774       |
| 4  | The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.                                                                                                                      | 27.8 | 540       |
| 5  | Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.                                                                                                                                                              | 27.8 | 528       |
| 6  | Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles.<br>Science, 2014, 344, 717-721.                                                                                                                 | 12.6 | 456       |
| 7  | New particle formation in the free troposphere: A question of chemistry and timing. Science, 2016, 352, 1109-1112.                                                                                                                          | 12.6 | 348       |
| 8  | Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes:<br>implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmospheric<br>Chemistry and Physics, 2009, 9, 3049-3060. | 4.9  | 300       |
| 9  | Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.                 | 7.1  | 300       |
| 10 | Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.                                                                                                                                          | 12.6 | 289       |
| 11 | Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an<br>integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10,<br>9739-9760.                 | 4.9  | 234       |
| 12 | Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under<br>atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of<br>America, 2014, 111, 15019-15024.       | 7.1  | 208       |
| 13 | Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.                                                                 | 3.3  | 198       |
| 14 | Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020,<br>581, 184-189.                                                                                                                           | 27.8 | 169       |
| 15 | Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science<br>Advances, 2018, 4, eaau5363.                                                                                                             | 10.3 | 164       |
| 16 | Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN)<br>during new particle formation events. Geophysical Research Letters, 2010, 37, .                                                           | 4.0  | 138       |
| 17 | Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric<br>Acid. Journal of Physical Chemistry A, 2012, 116, 6375-6386.                                                                              | 2.5  | 132       |
| 18 | Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.                                         | 7.1  | 118       |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature<br>Communications, 2016, 7, 11594.                                                                                                 | 12.8 | 116       |
| 20 | Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.                             | 7.1  | 107       |
| 21 | Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.                   | 4.9  | 106       |
| 22 | Evidence for ice particles in the tropical stratosphere from in-situ measurements. Atmospheric Chemistry and Physics, 2009, 9, 6775-6792.                                                                                          | 4.9  | 100       |
| 23 | Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison<br>with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres,<br>2016, 121, 1752-1775. | 3.3  | 99        |
| 24 | Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.                                                                                                                                            | 12.6 | 94        |
| 25 | New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863. | 4.9  | 92        |
| 26 | Characterization of the mass-dependent transmission efficiency of a CIMS. Atmospheric Measurement Techniques, 2016, 9, 1449-1460.                                                                                                  | 3.1  | 85        |
| 27 | On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation.<br>Atmospheric Chemistry and Physics, 2015, 15, 55-78.                                                                                 | 4.9  | 84        |
| 28 | Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth.<br>Atmospheric Chemistry and Physics, 2012, 12, 9427-9439.                                                                          | 4.9  | 76        |
| 29 | Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly<br>oxidized organic molecules at a rural site in central Germany. Atmospheric Chemistry and Physics,<br>2016, 16, 12793-12813.  | 4.9  | 76        |
| 30 | Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.                                                                                            | 4.9  | 74        |
| 31 | Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2011, 4, 437-443.                                                                | 3.1  | 71        |
| 32 | Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances,<br>ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>12,377.                 | 3.3  | 71        |
| 33 | Molecular understanding of new-particle formation from <i>α</i> -pinene<br>between â^`50 and +25〉°C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.                                                                       | 4.9  | 68        |
| 34 | Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric<br>Measurement Techniques, 2013, 6, 1793-1804.                                                                                    | 3.1  | 63        |
| 35 | Size-dependent influence of NO <sub>x</sub> on the growth rates of organic aerosol particles.<br>Science Advances, 2020, 6, eaay4945.                                                                                              | 10.3 | 61        |
| 36 | Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.                                                                                                          | 4.9  | 58        |

| #  | Article                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.                                                                                                                             | 4.9  | 56        |
| 38 | Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical<br>Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3,<br>873-883.                                                                                               | 2.7  | 52        |
| 39 | Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of<br>Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.                                                                                                  | 10.0 | 51        |
| 40 | The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.                                                                                                                                                                          | 4.9  | 50        |
| 41 | Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric<br>Chemistry and Physics, 2020, 20, 11809-11821.                                                                                                                                                      | 4.9  | 49        |
| 42 | Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.                                                                                                                                                           | 4.9  | 46        |
| 43 | A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects.<br>Journal of Aerosol Science, 2011, 42, 532-543.                                                                                                                                                 | 3.8  | 44        |
| 44 | Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber.<br>Atmospheric Chemistry and Physics, 2012, 12, 2205-2214.                                                                                                                                               | 4.9  | 44        |
| 45 | New particle formation from sulfuric acid and ammonia: nucleation and growth model based on<br>thermodynamics derived from CLOUD measurements for a wide range of conditions. Atmospheric<br>Chemistry and Physics, 2019, 19, 5033-5050.                                                            | 4.9  | 41        |
| 46 | Trace Detection of Organic Compounds in Complex Sample Matrixes by Single Photon Ionization Ion<br>Trap Mass Spectrometry: Real-Time Detection of Security-Relevant Compounds and Online Analysis of<br>the Coffee-Roasting Process. Analytical Chemistry, 2009, 81, 4456-4467.                     | 6.5  | 38        |
| 47 | The driving factors of new particle formation and growth in the polluted boundary layer.<br>Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.                                                                                                                                               | 4.9  | 38        |
| 48 | Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.                                                                                                                                                                          | 4.9  | 33        |
| 49 | On the derivation of particle nucleation rates from experimental formation rates. Atmospheric Chemistry and Physics, 2015, 15, 4063-4075.                                                                                                                                                           | 4.9  | 33        |
| 50 | Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C<br>and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.                                                                                                                      | 10.0 | 32        |
| 51 | Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for<br>high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and<br>first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.           | 3.1  | 30        |
| 52 | Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments.<br>Atmospheric Chemistry and Physics, 2016, 16, 293-304.                                                                                                                                             | 4.9  | 29        |
| 53 | Thermodynamics of the formation of sulfuric acid dimers in the binary<br>(H <sub>2</sub> SO <sub>4</sub> –H <sul<br>and ternary<br/>(H<sub>2</sub>SO<sub>4</sub>–H<sul< td=""><td>4.9</td><td>27</td></sul<></sul<br>                                                                               | 4.9  | 27        |
| 54 | System. Atmospheric Chemistry and Physics, 2015, 15, 10701-10721.<br>Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric<br>pressure interface time-of-flight (CI-APi-TOF) mass spectrometry. Atmospheric Measurement<br>Techniques, 2016, 9, 2135-2145. | 3.1  | 27        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.                                                                                                                                                          | 27.8 | 26        |
| 56 | Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD. Atmospheric Chemistry and Physics, 2016, 16, 13601-13618.                                                                             | 4.9  | 24        |
| 57 | Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule<br>productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.                                                             | 4.9  | 21        |
| 58 | Measurement of ammonia, amines and iodine compounds using protonated water cluster chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2020, 13, 2501-2522.                                                                     | 3.1  | 21        |
| 59 | Characterization of an Automated, Water-Based Expansion Condensation Nucleus Counter for<br>Ultrafine Particles. Aerosol Science and Technology, 2005, 39, 1174-1183.                                                                                  | 3.1  | 18        |
| 60 | Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.                                                                | 3.1  | 18        |
| 61 | Elemental composition and clustering behaviour of $\hat{i}\pm$ -pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.                                                                  | 4.9  | 17        |
| 62 | Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization<br>Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.                                                       | 3.3  | 17        |
| 63 | Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation.<br>Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.                                                                                 | 3.3  | 16        |
| 64 | Size-resolved online chemical analysis of nanoaerosol particles: a thermal desorption differential<br>mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer. Atmospheric<br>Measurement Techniques, 2018, 11, 5489-5506. | 3.1  | 16        |
| 65 | Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles. International Journal of Mass Spectrometry, 2007, 265, 30-39.                                                    | 1.5  | 15        |
| 66 | Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.                                                                           | 3.1  | 13        |
| 67 | Characterization of a Modified Expansion Condensation Particle Counter for Detection of Nanometer-Sized Particles. Aerosol Science and Technology, 2009, 43, 767-780.                                                                                  | 3.1  | 12        |
| 68 | Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and<br>the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and<br>Physics, 2021, 21, 17099-17114.                                         | 4.9  | 12        |
| 69 | Evaporation of sulfate aerosols at low relative humidity. Atmospheric Chemistry and Physics, 2017, 17, 8923-8938.                                                                                                                                      | 4.9  | 11        |
| 70 | Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.                                                                                 | 2.4  | 10        |
| 71 | Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.                                                                                                                                            | 2.4  | 8         |
| 72 | Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN. Atmospheric<br>Measurement Techniques, 2014, 7, 3849-3859.                                                                                                         | 3.1  | 7         |

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Characterization of Aerosol Particles Produced by a Skyscraper Demolition by Blasting. Journal of Aerosol Science, 2017, 112, 11-18.                             | 3.8  | 6         |
| 74 | Characterization of diethylene glycol-condensation particle counters for detection of sub-3 nm particles. , 2013, , .                                            |      | 2         |
| 75 | Response to Comment on "Unexpected Epoxide Formation in the Gas-Phase Photooxidation of<br>Isopreneâ€: Science, 2010, 327, 644-644.                              | 12.6 | 1         |
| 76 | Role of organics in particle nucleation: From the lab to global model. , 2013, , .                                                                               |      | 1         |
| 77 | Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .                                                  |      | 1         |
| 78 | Detection of security relevant substances within the cooperative project SAFE XUV. , 2008, , .                                                                   |      | 0         |
| 79 | Ternary H[sub 2]SO[sub 4]-H[sub 2]O-NH[sub 3] neutral and charged nucleation rates for a wide range of atmospheric conditions. , 2013, , .                       |      | 0         |
| 80 | Measurement of neutral sulfuric acid-dimethylamine clusters using CI-APi-TOF-MS. , 2013, , .                                                                     |      | 0         |
| 81 | The radiative effect of ion-induced inorganic nucleation in the free troposphere. , 2013, , .                                                                    |      | 0         |
| 82 | Aerosol nucleation and growth in a mixture of sulfuric acid/alpha-pinene oxidation products at the CERN CLOUD chamber. , 2013, , .                               |      | 0         |
| 83 | A double inversion: Size and time resolved growth rates for aerosol particles in the CERN CLOUD experiment. , 2013, , .                                          |      | 0         |
| 84 | Particle nucleation events at the high Alpine station Jungfraujoch. , 2013, , .                                                                                  |      | 0         |
| 85 | Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS). , 2013, , . |      | Ο         |